Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Quantum dots cast light on biomedical processes

Quantum dots made water-soluble by a coating can, in turn, be combined with polymers and be coupled to other quantum dots
Quantum dots made water-soluble by a coating can, in turn, be combined with polymers and be coupled to other quantum dots

Abstract:
The light emitted by quantum dots is both more intense and longer lasting than that produced by the fluorescent markers commonly used in medical and biological applications. Yet these nano-scale light sources still suffer from one major drawback - they do not dissolve in water. Researchers at the University of Twente's MESA+ Institute for Nanotechnology and at the A*STAR agency in Singapore have found a way to remedy this. They have developed a coating which allows quantum dots to be used inside the human body, even inside living cells. The researchers published details of their coating 'recipe' in the October issue of Nature Protocols.

Quantum dots cast light on biomedical processes

Enschede, The Netherlands | Posted on October 27th, 2011

The new coating enables quantum dots, which are semiconductor nanocrystals, to literally cast light on biological processes. These dots are "nuggets", consisting of several hundred to several thousand atoms, that emit visible light when they are exposed to invisible UV radiation, for example. They range from a few nanometres to several tens of nanometres in size. The coating's benefits are not limited to improved solubility in water alone. Other molecules can "lock on" to its surface - so called 'click chemistry'. This could make coated quantum dots sensitive to certain substances, for example, or allow them to bind to specific types of cells, such as tumour cells.
Better option

Scientists studying biological processes often use fluorescent tags that bind to biomolecules. This makes it relatively easy to track such molecules, even inside living cells. Quantum dots are a better option. They emit long-lasting, bright light, the colour of which depends on the size of the quantum dots used. For a number of reasons, including their toxicity, they were previously unsuitable for use in living organisms.

The researchers therefore developed an amphiphilic coating, i.e. one with both hydrophobic and hydrophilic properties. The "water hating" side of the polymer material attaches to the surface of the quantum dot. Its exposed hydrophilic side then makes the quantum dot/coating combination soluble in water. The coating builds up on the surface of the quantum dot through a process of self-assembly. The coating polymer has the added benefit that other molecules can be bound to it. Another important plus is that it does not adversely affect the quantum dot's light-emitting properties.

The study is a collaborative venture between the University of Twente's MESA+ Institute for Nanotechnology and the A*STAR agency's Institute of Materials Research and Engineering, in Singapore. It is headed by Professor Julius Vancso, Professor of Materials Science and Technology of Polymers at the University of Twente, who is also a visiting scientist at the Singapore institute.

The article entitled "Synthesis of functionalized amphiphilic polymers for coating quantum dots" by Dominik Jańczewski, Nikodem Tomczak, Ming-Yong Han and Julius Vancso appeared in the October edition of Nature Protocols. Copies are available on request.

####

For more information, please click here

Contacts:
University of Twente
PO Box 217
7500 AE Enschede, The Netherlands
Tel + 31 (0)53 489 9111
Fax + 31 (0)53 489 2000

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Quantum Dots/Rods

Researchers create quantum dots with single-atom precision June 30th, 2014

New Los Alamos Approach May Be Key to Quantum Dot Solar Cells With Real Gains in Efficiency: Nanoengineering Boosts Carrier Multiplication in Quantum Dots June 19th, 2014

MIPT-based researcher predicts new state of matter June 17th, 2014

Technology using microwave heating may impact electronics manufacture June 10th, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE