Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum dots cast light on biomedical processes

Quantum dots made water-soluble by a coating can, in turn, be combined with polymers and be coupled to other quantum dots
Quantum dots made water-soluble by a coating can, in turn, be combined with polymers and be coupled to other quantum dots

Abstract:
The light emitted by quantum dots is both more intense and longer lasting than that produced by the fluorescent markers commonly used in medical and biological applications. Yet these nano-scale light sources still suffer from one major drawback - they do not dissolve in water. Researchers at the University of Twente's MESA+ Institute for Nanotechnology and at the A*STAR agency in Singapore have found a way to remedy this. They have developed a coating which allows quantum dots to be used inside the human body, even inside living cells. The researchers published details of their coating 'recipe' in the October issue of Nature Protocols.

Quantum dots cast light on biomedical processes

Enschede, The Netherlands | Posted on October 27th, 2011

The new coating enables quantum dots, which are semiconductor nanocrystals, to literally cast light on biological processes. These dots are "nuggets", consisting of several hundred to several thousand atoms, that emit visible light when they are exposed to invisible UV radiation, for example. They range from a few nanometres to several tens of nanometres in size. The coating's benefits are not limited to improved solubility in water alone. Other molecules can "lock on" to its surface - so called 'click chemistry'. This could make coated quantum dots sensitive to certain substances, for example, or allow them to bind to specific types of cells, such as tumour cells.
Better option

Scientists studying biological processes often use fluorescent tags that bind to biomolecules. This makes it relatively easy to track such molecules, even inside living cells. Quantum dots are a better option. They emit long-lasting, bright light, the colour of which depends on the size of the quantum dots used. For a number of reasons, including their toxicity, they were previously unsuitable for use in living organisms.

The researchers therefore developed an amphiphilic coating, i.e. one with both hydrophobic and hydrophilic properties. The "water hating" side of the polymer material attaches to the surface of the quantum dot. Its exposed hydrophilic side then makes the quantum dot/coating combination soluble in water. The coating builds up on the surface of the quantum dot through a process of self-assembly. The coating polymer has the added benefit that other molecules can be bound to it. Another important plus is that it does not adversely affect the quantum dot's light-emitting properties.

The study is a collaborative venture between the University of Twente's MESA+ Institute for Nanotechnology and the A*STAR agency's Institute of Materials Research and Engineering, in Singapore. It is headed by Professor Julius Vancso, Professor of Materials Science and Technology of Polymers at the University of Twente, who is also a visiting scientist at the Singapore institute.

The article entitled "Synthesis of functionalized amphiphilic polymers for coating quantum dots" by Dominik Jańczewski, Nikodem Tomczak, Ming-Yong Han and Julius Vancso appeared in the October edition of Nature Protocols. Copies are available on request.

####

For more information, please click here

Contacts:
University of Twente
PO Box 217
7500 AE Enschede, The Netherlands
Tel + 31 (0)53 489 9111
Fax + 31 (0)53 489 2000

Copyright © University of Twente

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Quantum Dots/Rods

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Toward 'green' paper-thin, flexible electronics May 20th, 2015

Electricity generating nano-wizards: Quantum dots are an ideal nanolab to study the means to turning heat into electricity May 18th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

Research partnerships

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Organic nanoparticles, more lethal to tumors: Carbon-based nanoparticles could be used to sensitize cancerous tumors to proton radiotherapy and induce more focused destruction of cancer cells, a new study shows May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project