Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB's New Center for BioEngineering Producing Important Scientific Advances

Artist's conception of the
BioEngineering Building
Artist's conception of the BioEngineering Building

Abstract:
A new center at UC Santa Barbara has the development of an artificial pancreas in its sights, as well as new biomaterials, new tools for the detection and diagnosis of disease, and new mechanisms for drug delivery -- among other cutting-edge scientific developments.

UCSB's New Center for BioEngineering Producing Important Scientific Advances

Santa Barbara, CA | Posted on October 26th, 2011

UCSB's new Center for BioEngineering (CBE), proposed by Frank Doyle, associate dean of research in the College of Engineering, was approved earlier this year by the Academic Senate. The Center is a locus of research and teaching -- at the interface of biology, engineering, and physical sciences -- that is already producing results that benefit industry and medicine. Research at the CBE is yielding important advances in the understanding, diagnosis, and treatment of common and devastating diseases such as cancer, diabetes, Alzheimer's, and macular degeneration.

CBE builds on UCSB's interdisciplinary strengths in biophysics, biomaterials, biomolecular discovery, and systems biology, which allow for fundamental scientific discoveries to be transitioned to applications in medicine and biotechnology.

"UC Santa Barbara is very proud to be the home of the new Center for BioEngineering," said Chancellor Henry T. Yang. "The creation of the CBE marks a major step forward for our campus. In this highly interdisciplinary field, UCSB is already at the forefront. Our new Center will consolidate our position and support groundbreaking research aimed at finding innovative solutions for the diagnosis, treatment, and prevention of disease."

Samir Mitragotri, the founding director of the Center and professor of chemical engineering, emphasizes the importance of CBE as a "home" for bioengineering on campus, since bioengineering is already an area of research in many of UCSB's centers, institutes, departments, and colleges.

"I expect that the Center will enable opportunities in terms of new fundamental understanding of disease mechanisms, and research at the interface of physical sciences, engineering sciences, medicine, and biology," said Mitragotri. "That includes understanding and development of new technologies to either diagnose or treat a disease."

Kevin Plaxco, associate director of the CBE, and professor of chemistry and biochemistry, noted that UCSB's researchers in bioengineering are publishing many papers in the field, and these papers have had major impact, as measured by the number of other researchers who cite these studies. "By those objective standards, UCSB is a real powerhouse in the field without historically having a department or program, or any other focal point called bioengineering," he said.

Plaxco defined bioengineering as being comprised of three intellectual thrusts:

Biomedical engineering, traditionally defined as engineering applied to biological and medical problems.

Engineering of biological systems, the engineering of biological systems or the creation of things that mimic biological systems as a means of solving a pressing technical need. That is, using biology for engineering purposes.

Using the engineering perspective to elucidate how cells and organisms function. In other words, applying what we have learned in the fields of engineering to our understanding of the inner workings of biology.

In the area of engineering things that mimic biological systems, Plaxco cited research by Herb Waite, professor in the Department of Molecular, Cellular, and Developmental Biology. Plaxco said that Waite's research into the glues that marine mussels use to attach themselves to rocks and pier pilings could eventually lead to the development of synthetic analogs to be used as surgical and industrial adhesives that function in similarly challenging, wet-and-changing environments.

Plaxco explained that the third branch, looking at biology from the perspective of engineering, is particularly strong at UCSB. The field is growing rapidly on campus, he said, noting that faculty from departments across UCSB are looking at biology as an engineer would, asking what the control mechanisms are by which cells regulate their metabolic pathways. These researchers are defining the parameters that nature itself monitors and adjusts to get these complex systems to work robustly and routinely.

CBE has collaborations with several medical institutions, including the Sansum Diabetes Research Institute, the Sanford-Burnham Medical Research Institute, the Morgridge Institute for Research, and Santa Barbara Cottage Hospital. Doyle oversees medical partnering opportunities.

Sansum Diabetes Research Institute in Santa Barbara has a nine-year, collaborative bioengineering project with Doyle's research group. Besides his position as the associate dean of research in the College of Engineering, Doyle is a CBE faculty member, director of UCSB's Institute for Collaborative Biotechnologies (ICB), professor of chemical engineering, and the Mellichamp Chair in Process Control.

"Our goal is a completely automated artificial pancreas that will restore a normal lifestyle to individuals with type 1 diabetes, said Doyle. "Our researchers have guest investigator appointments at Sansum, and some of the M.D.s have adjunct faculty status at UCSB." He noted that some Sansum physicians are conducting research on campus.

"I am delighted with the development of the Center for BioEngineering on our campus," said Jamey Marth, director of the Center for Nanomedicine (CNM) and a faculty member of CBE. "I believe that the CBE will play a major role in the convergence of the physical and biological sciences leading to important biomedical and therapeutic advances. Myself, other members of the CNM, and the faculty of the Sanford-Burnham Medical Research Institute look forward to working together to achieve these exciting goals."

Some of the key research efforts of faculty in the Center for Bioengineering include the following:

Detection and diagnostics. UCSB researchers working at the interface of engineering and the molecular sciences are creating a new paradigm for point-of-care diagnostics. In particular, CBE researchers are using advanced microfluidics and molecular signal transduction to develop broad new classes of rapid, cost-effective diagnostic tools.

Systems biology and discovery tools. Researchers at the CBE use advanced computational methods and high throughput experimental biology to understand complex biological systems. They aim for insights into ailments such as cancer, diabetes, Alzheimer's, stroke, hemorrhage, and post-traumatic stress disorder.

Biomaterials are a crucial component of modern medicine. They are at the heart of revolutionary medical technologies such as prostheses, regenerative medicine, sensors, and drug
delivery. UCSB researchers are developing new biomaterials that have better functionality, processability, and biocompatibility.

Drug delivery refers to the science and engineering involved in converting potent biomolecules into practical medical therapies. Pills and injections are the most commonly used means of drug delivery, but CBE researchers are exploring revolutionary new ways to treat diseases such as diabetes, cancer, and cardiovascular diseases with much greater precision and efficiency. Methods they are exploring include using nanoparticles; using self-assembling nanomoleculars to deliver drugs to particular sites in the body; and using needle-less systems to deliver drugs through skin patches and oral pills.

The Center will ultimately be housed in a new, state-of-the-art BioEngineering building, scheduled to open in 2014. The three-story, 48,000-square-foot structure will accommodate laboratories and offices for approximately 15 faculty members and their graduate students, as well as administrative offices, and a 100-seat auditorium. It will be the home of both the CBE and the ICB. Construction is expected to begin in 2012.

Moore Ruble Yudell Architects and Planners of Santa Monica designed the building, which will include elements of Santa Barbara style. The building has been designed from the ground-up to be highly energy-efficient, meeting the Leadership in Energy and Environmental Design (LEED) Silver standards set by the U.S. Green Building Council.

Other facilities used by CBE faculty are the Materials Research Laboratory, the Engineering Science Building, and the California NanoSystems Institute.

The Center is part of the University of California's Bioengineering Institute of California, which consists of 10 campuses and three national laboratories.

CBE efforts will be carried out by scientists in UCSB's College of Engineering; Mathematics, Letters, and Physical Sciences, in the College of Letters and Science; the Department of Chemical Engineering; the Department of Mechanical Engineering; the Department of Electrical and Computer Engineering; the Department of Physics; the Department of Chemistry and Biochemistry; the Department of Psychological and Brain Sciences; the Department of Ecology, Evolution, and Marine Biology; the Materials Research Laboratory, the Department of Molecular, Cellular, and Developmental Biology; the Materials Department; the Institute for Collaborative Biotechnology; the Neuroscience Research Institute; the Center for Stem Cell Biology and Engineering; the Center for the Study of Macular Degeneration; the Center for Nanomedicine; and the California NanoSystems Institute.

####

For more information, please click here

Contacts:
Gail Gallessich
(805)-893-7220


George Foulsham
(805)-893-3071


Samir Mitragotri
(805) 893-7532


Frank Doyle
(805) 893-8133


Kevin Plaxco

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Oxford Instruments announces winners of the 2015 Sir Martin Wood Science Prize for China May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Openings/New facilities/Groundbreaking/Expansion

Graphenea celebrates fifth anniversary April 27th, 2015

Blue Star Opportunities Corp. (BSTO) Completes Major Condo Building Project in Manhattan Residential Area; Company Now Has the Resources to Service the Largest of Construction Projects April 21st, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

Academic/Education

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

SUNY Poly and Sematech Announce Air Products Joins Cutting-Edge CMP Center At Albany Nanotech Complex April 28th, 2015

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Nanomedicine

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Polymeric Nanocarriers Improve Performance of Anticancer Drugs April 30th, 2015

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

Announcements

Antibacterial Ceramic Nanoparticles, Appropriate Material for Medical Devices May 3rd, 2015

Nanometrics to Present at the B. Riley & Co. 16th Annual Investor Conference May 2nd, 2015

Time Dependant Spectroscopy of Microscopic Samples: CRAIC TimePro™ software is used with CRAIC Technologies microspectrometers to measure the kinetic UV-visible-NIR, Raman and fluorescence spectra of microscopic sample areas May 2nd, 2015

ORNL researchers probe chemistry, topography and mechanics with one instrument May 2nd, 2015

Nanobiotechnology

Artificial photosynthesis could help make fuels, plastics and medicine April 29th, 2015

A phone with the ultimate macro feature: New attachment turns a smartphone into a microscope that can image and size DNA molecules 50,000 times thinner than a human hair April 29th, 2015

An effective, biodegradable and broad-spectrum nanoparticles as potent antibacterial agents April 28th, 2015

Weighing -- and imaging -- molecules one at a time April 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project