Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Relaxation dynamics of 2D nanoparticle systems

Abstract:
Soft matters maintain their structures via weak interactions, such as Van der Waals, capillary, hydrogen bonds etc. The entropy plays a key role in the ordering of this kind of materials. They behave as a solid until a sufficiently large stress is applied, and then behave as a viscoelastic liquid. Due to the unique structures and rheological properties, soft matter such as concentrated suspensions, emulsions, pastes and gels often exhibit unusual slow relaxation and aging effect. Studying the relaxation dynamics may gain more insight into the microstructure of the material and may also shed light on the understanding of the physical origin of glass transition.

Relaxation dynamics of 2D nanoparticle systems

PR China | Posted on October 24th, 2011

Nanoparticle can be trapped at the air-water interface. The formed layer is a typical 2D soft matter, which plays essential role in foams, emulsification and pharmacy. However, owing to the low dimension and absence of theory, the study of 2D relaxation is quite a challenge. By using the Langmuir troughs technique and oscillating bubbles or drops methods, a deformation can be exerted on the layer rapidly. The relaxation then can be studied by monitoring the time viaration of the surface pressure. However, these techniques can not obtain the anisotropy of the layers and hence are limited.

Dr. ZANG Duyang et al from the Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, has developed a novel approach in which two orthogonal Wilhelmy plates have been utilized to measure the surface pressure in the two directions. By comparing the relaxation dynamics under static and oscillation state, the relaxation mechanisms have been elucidated.

Unlike the surfactant of low molecular weight, the adsorption of nanoparticles at the interfaces is irreversible. This leads to the different Π-Γ isotherms. With the increase of surface density, as well as the textual change, the surface pressure present remarkable anisotropic effect. The anisotropy suggests that the layer is under non-equilibrium state. The relaxation towards equilibrium occurs by means of particle rearrangement. When the layer is kept static, the particle rearrangement is driven by the inner stress stored in the layer. Thus, the relaxation is slow. While under barrier oscillation, additional driving force is exerted by the barriers. Consequently, the relaxation is accelerated significantly.

This work is supported by the Northwestern Polytechnical University Foundation for Fundamental Research (NPU-FFR-JC20100242).

See the article: Zang D Y, Zhang Y J. Surface pressure anisotropy and complex relaxation of silica nanoparticle monolayer at the air-water interface. Sci China Phys Mech Astro, 2011, 41(9)

####

For more information, please click here

Contacts:
ZANG Duyang

0086-298-843-1618

Copyright © Science in China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Physics

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

Chemistry

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Discoveries

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Announcements

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project