Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Relaxation dynamics of 2D nanoparticle systems

Abstract:
Soft matters maintain their structures via weak interactions, such as Van der Waals, capillary, hydrogen bonds etc. The entropy plays a key role in the ordering of this kind of materials. They behave as a solid until a sufficiently large stress is applied, and then behave as a viscoelastic liquid. Due to the unique structures and rheological properties, soft matter such as concentrated suspensions, emulsions, pastes and gels often exhibit unusual slow relaxation and aging effect. Studying the relaxation dynamics may gain more insight into the microstructure of the material and may also shed light on the understanding of the physical origin of glass transition.

Relaxation dynamics of 2D nanoparticle systems

PR China | Posted on October 24th, 2011

Nanoparticle can be trapped at the air-water interface. The formed layer is a typical 2D soft matter, which plays essential role in foams, emulsification and pharmacy. However, owing to the low dimension and absence of theory, the study of 2D relaxation is quite a challenge. By using the Langmuir troughs technique and oscillating bubbles or drops methods, a deformation can be exerted on the layer rapidly. The relaxation then can be studied by monitoring the time viaration of the surface pressure. However, these techniques can not obtain the anisotropy of the layers and hence are limited.

Dr. ZANG Duyang et al from the Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of Science, Northwestern Polytechnical University, has developed a novel approach in which two orthogonal Wilhelmy plates have been utilized to measure the surface pressure in the two directions. By comparing the relaxation dynamics under static and oscillation state, the relaxation mechanisms have been elucidated.

Unlike the surfactant of low molecular weight, the adsorption of nanoparticles at the interfaces is irreversible. This leads to the different Π-Γ isotherms. With the increase of surface density, as well as the textual change, the surface pressure present remarkable anisotropic effect. The anisotropy suggests that the layer is under non-equilibrium state. The relaxation towards equilibrium occurs by means of particle rearrangement. When the layer is kept static, the particle rearrangement is driven by the inner stress stored in the layer. Thus, the relaxation is slow. While under barrier oscillation, additional driving force is exerted by the barriers. Consequently, the relaxation is accelerated significantly.

This work is supported by the Northwestern Polytechnical University Foundation for Fundamental Research (NPU-FFR-JC20100242).

See the article: Zang D Y, Zhang Y J. Surface pressure anisotropy and complex relaxation of silica nanoparticle monolayer at the air-water interface. Sci China Phys Mech Astro, 2011, 41(9)

####

For more information, please click here

Contacts:
ZANG Duyang

0086-298-843-1618

Copyright © Science in China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Physics

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Energy against the current on a quantum scale, without contradicting the laws of physics: A piece of research in which the UPV/EHU-University of the Basque Country has participated confirms that merely observing a flow of energy or particles can change its direction October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Chemistry

What can be discovered at the junction of physics and chemistry October 6th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project