Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Stanford researchers build transparent, super-stretchy skin-like sensor

A close-up view of the super-stretchy, transparent, highly sensitive skin-like sensor that Zhenan Bao, associate professor of chemical engineering, and Darren Lipomi, postdoctoral researcher in chemical engineering, developed at Stanford University with their colleagues.

Credit: Steve Fyffe, Stanford News Service
A close-up view of the super-stretchy, transparent, highly sensitive skin-like sensor that Zhenan Bao, associate professor of chemical engineering, and Darren Lipomi, postdoctoral researcher in chemical engineering, developed at Stanford University with their colleagues.

Credit: Steve Fyffe, Stanford News Service

Abstract:
Imagine having skin so supple you could stretch it out to more than twice its normal length in any direction - repeatedly - yet it would always snap back completely wrinkle-free when you let go of it. You would certainly never need Botox.

Stanford researchers build transparent, super-stretchy skin-like sensor

Stanford, CA | Posted on October 24th, 2011

That enviable elasticity is one of several new features built into a new transparent skin-like pressure sensor that is the latest sensor developed by Stanford's Zhenan Bao, associate professor of chemical engineering, in her quest to create an artificial "super skin." The sensor uses a transparent film of single-walled carbon nanotubes that act as tiny springs, enabling the sensor to accurately measure the force on it, whether it's being pulled like taffy or squeezed like a sponge.

"This sensor can register pressure ranging from a firm pinch between your thumb and forefinger to twice the pressure exerted by an elephant standing on one foot," said Darren Lipomi, a postdoctoral researcher in Bao's lab, who is part of the research team.

"None of it causes any permanent deformation," he said.

Lipomi and Michael Vosgueritchian, graduate student in chemical engineering, and Benjamin Tee, graduate student in electrical engineering, are the lead authors of a paper describing the sensor published online Oct. 23 by Nature Nanotechnology. Bao is a coauthor of the paper.

The sensors could be used in making touch-sensitive prosthetic limbs or robots, for various medical applications such as pressure-sensitive bandages or in touch screens on computers.

The key element of the new sensor is the transparent film of carbon "nano-springs," which is created by spraying nanotubes in a liquid suspension onto a thin layer of silicone, which is then stretched.

When the nanotubes are airbrushed onto the silicone, they tend to land in randomly oriented little clumps. When the silicone is stretched, some of the "nano-bundles" get pulled into alignment in the direction of the stretching.

When the silicone is released, it rebounds back to its original dimensions, but the nanotubes buckle and form little nanostructures that look like springs.

"After we have done this kind of pre-stretching to the nanotubes, they behave like springs and can be stretched again and again, without any permanent change in shape," Bao said.

Stretching the nanotube-coated silicone a second time, in the direction perpendicular to the first direction, causes some of the other nanotube bundles to align in the second direction. That makes the sensor completely stretchable in all directions, with total rebounding afterward.

Additionally, after the initial stretching to produce the "nano-springs," repeated stretching below the length of the initial stretch does not change the electrical conductivity significantly, Bao said. Maintaining the same conductivity in both the stretched and unstretched forms is important because the sensors detect and measure the force being applied to them through these spring-like nanostructures, which serve as electrodes.

The sensors consist of two layers of the nanotube-coated silicone, oriented so that the coatings are face-to-face, with a layer of a more easily deformed type of silicone between them.

The middle layer of silicone stores electrical charge, much like a battery. When pressure is exerted on the sensor, the middle layer of silicone compresses, which alters the amount of electrical charge it can store. That change is detected by the two films of carbon nanotubes, which act like the positive and negative terminals on a typical automobile or flashlight battery.

The change sensed by the nanotube films is what enables the sensor to transmit what it is "feeling."

Whether the sensor is being compressed or extended, the two nanofilms are brought closer together, which seems like it might make it difficult to detect which type of deformation is happening. But Lipomi said it should be possible to detect the difference by the pattern of pressure.

With compression, you would expect to see sort of a bull's-eye pattern, with the greatest deformation at the center and decreasing deformation as you go farther from the center.

"If the device was gripped by two opposing pincers and stretched, the greatest deformation would be along the straight line between the two pincers," Lipomi said. Deformation would decrease as you moved farther away from the line.

Bao's research group previously created a sensor so sensitive to pressure that it could detect pressures "well below the pressure exerted by a 20 milligram bluebottle fly carcass" that the researchers tested it with. This latest sensor is not quite that sensitive, she said, but that is because the researchers were focused on making it stretchable and transparent.

"We did not spend very much time trying to optimize the sensitivity aspect on this sensor," Bao said.

"But the previous concept can be applied here. We just need to make some modifications to the surface of the electrode so that we can have that same sensitivity."

Lipomi, Vosgueritchian and Tee contributed equally to the research and are co-primary authors of the Nature Nanotechnology paper. Sondra Hellstrom, a graduate student in applied physics; Jennifer Lee, an undergraduate in chemical engineering; and Courtney Fox, a graduate student in chemical engineering, also contributed to the research and are co-authors of the paper.

####

For more information, please click here

Contacts:
Louis Bergeron

650-725-1944

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - Nanotube Springs in Super-stretchy Skin-like Sensor

Related News Press

News and information

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanotubes/Buckyballs

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Sensors

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Rice nanophotonics experts create powerful molecular sensor: Sensor amplifies optical signature of single molecules about 100 billion times July 15th, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Announcements

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE