Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sound gives nanocavity a twist

Abstract:
Researchers from Augsburg, Munich and Santa Barbara (California) successfully combined the worlds of nanophotonics and nanomechanical systems. The scientists work for the cluster of excellence Nanosystems Initiative Munich (NIM), the Center for Nanoscience (CeNS), the Augsburg Center for Innovative Technologies (ACIT) and for the California NanoSystems Institute (CNSI) at Santa Barbara.

Sound gives nanocavity a twist

Munich, Germany and Santa Barbara, CA | Posted on October 21st, 2011

NIM graduate student Daniel Fuhrmann and his supervisor Hubert Krenner demonstrate in the latest issue of Nature Photonics that a sound wave can be used to control a photonic crystal. Quantum effects within the crystal lead to an fast and very efficient generation and modulation of single photons, the quanta of light. Hubert Krenner recently established a prestigious Emmy Noether Junior Research Group at the Chair of Achim Wixforth at Augsburg University.

For their experiments the team fabricated a freestanding nanomembrane of semiconducting material. Into the membrane they drilled a large periodic array of tiny holes using cleanroom nanofabrication. In this structure, a photonic crystal, they trapped light of a well-defined wavelength or color inside a region where they skipped three holes. As light emitters they placed so-called quantum dots inside of this nanocavity. These quantum dots are often called artificial atoms because they - just like real atoms - emit light at sharp spectral lines and as single quanta (photons).

Until now the key challenge in this system was to overlap the wavelength of the light trapped in the nanocavity and the light emitted by the quantum dot. When the two wavelengths are in resonance the quantum mechanical Purcell effect leads to a dramatic increase of the light extraction efficiency. The NIM-CNSI research team solved this problem very elegantly: the scientists used a nanoquake, so-called surface acoustic waves. These waves periodically stretch and compress the thin membrane and its precisely ordered array of holes. The nanoquakes deform the photonic crystal at radio frequency and the wavelength of the light inside the nanocavity oscillates back and forth in less than a third of a nanosecond. This is more than ten times faster than any other approach worldwide.

NIM-graduate student Daniel Fuhrmann is excited about the success of his experiments: "The idea of an acoustically modulated photonic crystal existed in our lab for quite a long time. After all the hard work it made me really proud to actually see the wavelength of the nanocavity oscillating with the shaking of the nanoquake. I am also very happy that we again have shown that surface acoustic waves, our special tool in Augsburg, lead to surprising results and outstanding research also in the field of nanophotonics"

The Augsburg group is renowned for their pioneering work and application of surface acoustic waves. They apply these to various types of nanosystems ranging from biological and biophysical systems over microfluidics to fundamental physical effect such as the Quantum Hall Effect. All these experiments have attracted large attention worldwide and built the outstanding reputation of their research using their nanoquakes on a chip.

The experiment by Daniel Fuhrmann and his colleagues from Bavaria and California is an excellent example for a successful international collaboration between the two high-tech states on both sides of the Atlantic Ocean. Hubert Krenner and Achim Wixforth both spent a long time at UC Santa Barbara and frequently visit their Californian colleagues. The project was seed-funded by the Bavarian-Californian Technology Center (BaCaTeC) and carried out supported by NIM within a PhD student scholarship of the Bayerische Forschungsstiftung (BFS).

Based on these groundbreaking experiments researchers expect that a highly efficient, acoustically triggered "single photon source" will be realized. Such a device is crucially required for inherently secure quantum-cryptography and the optical quantum computer.

####

For more information, please click here

Contacts:
Dr. Birgit Gebauer
Outreach Manager
Nanosystems Initiative Munich
Schellingstraße 4
80799 München, Germany
Phone: +49 (89) 2180 5091
Fax: +49 (89) 2180 5649
birgit.gebauer(at)lmu.de

Copyright © Nanosystems Initiative Munich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: D. A. Fuhrmann, Susanna M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, H. J. Krenner, Nature Photonics 5, 605–609 (2011). doi:10.1038/nphoton.2011.208

Related News Press

News and information

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanomaterials In Cosmetic And Personal Care Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Quantum Computing

Quantum networks: Back and forth are not equal distances! July 28th, 2015

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Optical computing/ Photonic computing

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Penn researchers discover new chiral property of silicon, with photonic applications July 25th, 2015

Discoveries

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Announcements

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanomaterials In Cosmetic And Personal Care Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Photonics/Optics/Lasers

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Quantum nanoscience

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

World first: Significant development in the understanding of macroscopic quantum behavior: Researchers from Polytechnique Montréal and Imperial College London demonstrate the wavelike quantum behavior of a polariton condensate on a macroscopic scale and at room temperature July 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project