Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sound gives nanocavity a twist

Abstract:
Researchers from Augsburg, Munich and Santa Barbara (California) successfully combined the worlds of nanophotonics and nanomechanical systems. The scientists work for the cluster of excellence Nanosystems Initiative Munich (NIM), the Center for Nanoscience (CeNS), the Augsburg Center for Innovative Technologies (ACIT) and for the California NanoSystems Institute (CNSI) at Santa Barbara.

Sound gives nanocavity a twist

Munich, Germany and Santa Barbara, CA | Posted on October 21st, 2011

NIM graduate student Daniel Fuhrmann and his supervisor Hubert Krenner demonstrate in the latest issue of Nature Photonics that a sound wave can be used to control a photonic crystal. Quantum effects within the crystal lead to an fast and very efficient generation and modulation of single photons, the quanta of light. Hubert Krenner recently established a prestigious Emmy Noether Junior Research Group at the Chair of Achim Wixforth at Augsburg University.

For their experiments the team fabricated a freestanding nanomembrane of semiconducting material. Into the membrane they drilled a large periodic array of tiny holes using cleanroom nanofabrication. In this structure, a photonic crystal, they trapped light of a well-defined wavelength or color inside a region where they skipped three holes. As light emitters they placed so-called quantum dots inside of this nanocavity. These quantum dots are often called artificial atoms because they - just like real atoms - emit light at sharp spectral lines and as single quanta (photons).

Until now the key challenge in this system was to overlap the wavelength of the light trapped in the nanocavity and the light emitted by the quantum dot. When the two wavelengths are in resonance the quantum mechanical Purcell effect leads to a dramatic increase of the light extraction efficiency. The NIM-CNSI research team solved this problem very elegantly: the scientists used a nanoquake, so-called surface acoustic waves. These waves periodically stretch and compress the thin membrane and its precisely ordered array of holes. The nanoquakes deform the photonic crystal at radio frequency and the wavelength of the light inside the nanocavity oscillates back and forth in less than a third of a nanosecond. This is more than ten times faster than any other approach worldwide.

NIM-graduate student Daniel Fuhrmann is excited about the success of his experiments: "The idea of an acoustically modulated photonic crystal existed in our lab for quite a long time. After all the hard work it made me really proud to actually see the wavelength of the nanocavity oscillating with the shaking of the nanoquake. I am also very happy that we again have shown that surface acoustic waves, our special tool in Augsburg, lead to surprising results and outstanding research also in the field of nanophotonics"

The Augsburg group is renowned for their pioneering work and application of surface acoustic waves. They apply these to various types of nanosystems ranging from biological and biophysical systems over microfluidics to fundamental physical effect such as the Quantum Hall Effect. All these experiments have attracted large attention worldwide and built the outstanding reputation of their research using their nanoquakes on a chip.

The experiment by Daniel Fuhrmann and his colleagues from Bavaria and California is an excellent example for a successful international collaboration between the two high-tech states on both sides of the Atlantic Ocean. Hubert Krenner and Achim Wixforth both spent a long time at UC Santa Barbara and frequently visit their Californian colleagues. The project was seed-funded by the Bavarian-Californian Technology Center (BaCaTeC) and carried out supported by NIM within a PhD student scholarship of the Bayerische Forschungsstiftung (BFS).

Based on these groundbreaking experiments researchers expect that a highly efficient, acoustically triggered "single photon source" will be realized. Such a device is crucially required for inherently secure quantum-cryptography and the optical quantum computer.

####

For more information, please click here

Contacts:
Dr. Birgit Gebauer
Outreach Manager
Nanosystems Initiative Munich
Schellingstraße 4
80799 München, Germany
Phone: +49 (89) 2180 5091
Fax: +49 (89) 2180 5649
birgit.gebauer(at)lmu.de

Copyright © Nanosystems Initiative Munich

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: D. A. Fuhrmann, Susanna M. Thon, H. Kim, D. Bouwmeester, P. M. Petroff, A. Wixforth, H. J. Krenner, Nature Photonics 5, 605–609 (2011). doi:10.1038/nphoton.2011.208

Related News Press

News and information

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Quantum Computing

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

Noise in a microwave amplifier is limited by quantum particles of heat November 10th, 2014

Sussex physicists find simple solution for quantum technology challenge October 28th, 2014

Optical computing/ Photonic computing

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Leica Microsystems Presents Universal Hybrid Detector for Single Molecule Detection and Imaging at SfN and ASCB: Leica HyD SMD - the Optimal Detector for Precise and Reliable SMD data November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Photonics/Optics/Lasers

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

'Direct writing' of diamond patterns from graphite a potential technological leap November 5th, 2014

Outsmarting Thermodynamics in Self-assembly of Nanostructures: Berkeley Lab reports method for symmetry-breaking in feedback-driven self-assembly of optical metamaterials November 4th, 2014

Research partnerships

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

First genetic-based tool to detect circulating cancer cells in blood: NanoFlares light up individual cells if breast cancer biomarker is present November 17th, 2014

Quantum nanoscience

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Pseudospin-driven spin relaxation mechanism in graphene November 11th, 2014

Heat Transfer Sets the Noise Floor for Ultrasensitive Electronics November 11th, 2014

On-demand conductivity for graphene nanoribbons: Physicists from Uzbekistan and Germany have devised a theoretical model to tune the conductivity of graphene zigzag nanoribbons using ultra-short pulses November 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE