Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electrochemistry controlled with a plasma electrode

Abstract:
Engineers at Case Western Reserve University have made an electrochemical cell that uses a plasma for an electrode, instead of solid pieces of metal.

Electrochemistry controlled with a plasma electrode

Cleveland, OH | Posted on October 20th, 2011

The technology may open new pathways for battery and fuel cell design and manufacturing, making hydrogen fuel and synthesizing nanomaterials and polymers.

A description of the research is now published in the online edition of the Journal of the American Chemical Society at pubs.acs.org/doi/abs/10.1021/ja207547b.

"Plasmas formed at ambient conditions are normally sparks which are uncontrolled, unstable and destructive," said Mohan Sankaran, a chemical engineering professor and senior author of the paper. "We've developed a plasma source that is stable at atmospheric pressure and room temperature which allows us to study and control the transfer of electrons across the interface of a plasma and an electrolyte solution."

Sankaran worked with former students Carolyn Richmonds and Brandon Bartling, current students Megan Witzke and Seung Whan Lee and fellow chemical engineering professors Jesse Wainright and Chung-Chiun Liu.

The group used a traditional set up with their nontraditional electrode.

They filled an electrochemical cell, essentially two glass jars joined with a glass tube, with an electrolyte solution of potassium ferricyanide and potassium chloride.

For the cathode, argon gas was pumped through a stainless steel tube that was placed a short distance above the solution. A microplasma formed between the tube and the surface.

The anode was a piece of silver/silver chloride.

When a current was passed through the plasma, electrons reduced ferricyanide to ferrocyanide.

Monitoring with ultraviolet-visible spectrophotometry showed the solution was reduced at a relatively constant rate and that each ferrycyanide molecule was reduced to one ferrocyanide molecule.

As the current was raised, the rate of reduction increased. And testing at both electrodes showed no current was lost.

The researchers, however, found two drawbacks.

Only about one in 20 electrons transferred from the plasma was involved in the reduction reaction. They speculate the lost electrons were converting hydrogen in the water to hydrogen molecules, or that other reactions they were unable to monitor were taking place. They are setting up new tests to find out.

Additionally, the power needed to form the plasma and induce the electrochemical reactions was substantially higher than that required to induce the reaction with metal cathodes.

The researchers know their first model may not be as efficient as what most industries need, but the technology has potential to be used in a number of ways.

Working with Sankaran, Seung has scanned a plasma over a thin film to reduce metal cations to crystalline metal nanoparticles in a pattern.

"The goal is to produce nanostructures at the same small scale as can be done now with lithography in a vacuum, but in an open room," Seung said.

They are investigating whether the plasma electrode can replace traditional electrodes where they've come up short, from converting hydrogen in water to hydrogen gas on a large scale to reducing carbon dioxide to useful fuels and commodity chemicals such as ethanol.

The researchers are fine-tuning the process and testing for optimal combinations of electrode design and chemical reactions for different uses.

"This is a basic idea," Sankaran said. "We don't know where it will go."

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Chemistry

Chains of nanogold forged with atomic precision September 23rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Researchers build world's largest database of crystal surfaces and shapes September 14th, 2016

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Discoveries

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Materials/Metamaterials

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

UNAM develops successful nano edible coating which increases life food September 27th, 2016

Announcements

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Fish 'biowaste' converted to piezoelectric energy harvesters: Jadavpur University researchers in India devised a way to recycle fish byproducts into an energy harvester for self-powered electronics September 8th, 2016

Fuel Cells

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic