Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electrochemistry controlled with a plasma electrode

Abstract:
Engineers at Case Western Reserve University have made an electrochemical cell that uses a plasma for an electrode, instead of solid pieces of metal.

Electrochemistry controlled with a plasma electrode

Cleveland, OH | Posted on October 20th, 2011

The technology may open new pathways for battery and fuel cell design and manufacturing, making hydrogen fuel and synthesizing nanomaterials and polymers.

A description of the research is now published in the online edition of the Journal of the American Chemical Society at pubs.acs.org/doi/abs/10.1021/ja207547b.

"Plasmas formed at ambient conditions are normally sparks which are uncontrolled, unstable and destructive," said Mohan Sankaran, a chemical engineering professor and senior author of the paper. "We've developed a plasma source that is stable at atmospheric pressure and room temperature which allows us to study and control the transfer of electrons across the interface of a plasma and an electrolyte solution."

Sankaran worked with former students Carolyn Richmonds and Brandon Bartling, current students Megan Witzke and Seung Whan Lee and fellow chemical engineering professors Jesse Wainright and Chung-Chiun Liu.

The group used a traditional set up with their nontraditional electrode.

They filled an electrochemical cell, essentially two glass jars joined with a glass tube, with an electrolyte solution of potassium ferricyanide and potassium chloride.

For the cathode, argon gas was pumped through a stainless steel tube that was placed a short distance above the solution. A microplasma formed between the tube and the surface.

The anode was a piece of silver/silver chloride.

When a current was passed through the plasma, electrons reduced ferricyanide to ferrocyanide.

Monitoring with ultraviolet-visible spectrophotometry showed the solution was reduced at a relatively constant rate and that each ferrycyanide molecule was reduced to one ferrocyanide molecule.

As the current was raised, the rate of reduction increased. And testing at both electrodes showed no current was lost.

The researchers, however, found two drawbacks.

Only about one in 20 electrons transferred from the plasma was involved in the reduction reaction. They speculate the lost electrons were converting hydrogen in the water to hydrogen molecules, or that other reactions they were unable to monitor were taking place. They are setting up new tests to find out.

Additionally, the power needed to form the plasma and induce the electrochemical reactions was substantially higher than that required to induce the reaction with metal cathodes.

The researchers know their first model may not be as efficient as what most industries need, but the technology has potential to be used in a number of ways.

Working with Sankaran, Seung has scanned a plasma over a thin film to reduce metal cations to crystalline metal nanoparticles in a pattern.

"The goal is to produce nanostructures at the same small scale as can be done now with lithography in a vacuum, but in an open room," Seung said.

They are investigating whether the plasma electrode can replace traditional electrodes where they've come up short, from converting hydrogen in water to hydrogen gas on a large scale to reducing carbon dioxide to useful fuels and commodity chemicals such as ethanol.

The researchers are fine-tuning the process and testing for optimal combinations of electrode design and chemical reactions for different uses.

"This is a basic idea," Sankaran said. "We don't know where it will go."

####

For more information, please click here

Contacts:
Kevin Mayhood

216-368-4442

Copyright © Case Western Reserve University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Chemistry

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Large scale preparation method of high quality SWNT sponges August 24th, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Fuel Cells

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

A new way to find better battery materials: Design principles could point to better electrolytes for next-generation lithium batteries March 29th, 2018

Rice sleuths find metal in 'metal-free' catalysts: Study of graphene catalysts finds trace of manganese, suggests better ultrathin fuel-cell components February 26th, 2018

Study boosts hope for cheaper fuel cells: Rice University researchers show how to optimize nanomaterials for fuel-cell cathodes January 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project