Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Rice's Zheng wins Packard Fellowship: Chemist will build spectrometer to analyze molecules in 3-D

Rice University chemist Junrong Zheng will use his Packard Foundation award to build a spectrometer that can determine the conformation of molecules in three dimensions.

Credit: Jeff Fitlow/Rice University
Rice University chemist Junrong Zheng will use his Packard Foundation award to build a spectrometer that can determine the conformation of molecules in three dimensions.

Credit: Jeff Fitlow/Rice University

Abstract:
Junrong Zheng's techniques to see the fine details of how molecules interact have earned the young Rice University scientist a highly prestigious Packard Fellowship.

Rice's Zheng wins Packard Fellowship: Chemist will build spectrometer to analyze molecules in 3-D

Houston, TX | Posted on October 20th, 2011

Zheng and his team of postdoctoral researchers and graduate students will use the five-year grant that comes with the fellowship to build a laser-based spectroscopic device to easily see the conformation -- the shape and orientation -- of any molecule, no matter how complex.

Zheng, an assistant professor of chemistry who joined Rice in 2008, discovered a method to analyze the natural vibrations of the bonds that hold molecules together in a way that can tell him how far apart those molecules are. Further work led to a 2-D method for finding the angles at which the atoms within a molecule bond.

Now Zheng is preparing to leap into real-time, three-dimensional analysis of molecular conformations. Doing so will take some time and effort -- and money -- to build a machine capable of looking at molecular details in a way nobody has before. A successful effort could mean a quantum leap in the study of chemical reactions, protein folding, drug/protein interactions, doped nanomaterials and molecular recognition.

Zheng anticipates it will take five years to build the machine, a full-spectrum, multidimensional spectrometer that can read a wide range of frequencies from the high infrared to the low terahertz. It will allow researchers to take snapshots of molecules that could provide in seconds data that now takes days to acquire.

He knows firsthand about that process; he published a paper this year that detailed his technique for acquiring 3-D data from a specific molecule.

The paper in the Journal of Physical Chemistry described how Zheng and his team analyzed the conformations of a small molecule, 1-cyanovinyl acetate, known to contain a wide range of vibrational energy.

Theoretical calculations of the five possible conformations of the molecule let them compare what they saw through physical analysis with a two-dimensional infrared spectrometer designed by Zheng and his team. The comparison showed theory and experimental results in virtually perfect alignment.

Zheng believed results for molecules bigger than the fast-moving 1-cyanovinyl acetate would be just as good because their rotations are slower.

Zheng said the machine, when finished, will probably be the only one of its kind in the world. The goal is the development of a sophisticated yet routine analytic tool for determining molecular structure for chemists and researchers who are not laser specialists.

"Hopefully, we can make it very easy to use, so everybody can go buy one," he said.

The David and Lucille Packard Foundation names 16 award winners every year from among 100 nominees who represent 50 American research universities. Zheng is the fifth Rice researcher to win. He joins Rice physicists Thomas Killian and Douglas Natelson and Earth scientists Cin-Ty Lee and Rajdeep Dasgupta.

"I didn't anticipate this award, because I know some very important people in our field have won it," Zheng said. "I know it's very competitive, so it means people appreciate my work."

####

For more information, please click here

Contacts:
Mike Williams

713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Chemistry

Chains of nanogold – forged with atomic precision September 23rd, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Tools

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Novel nanoscale detection of real-time DNA amplification holds promise for diagnostics: Research team led by Nagoya University develop a label-free method for detecting DNA amplification in real time based on refractive index changes in diffracted light September 12th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic