Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Rice's Zheng wins Packard Fellowship: Chemist will build spectrometer to analyze molecules in 3-D

Rice University chemist Junrong Zheng will use his Packard Foundation award to build a spectrometer that can determine the conformation of molecules in three dimensions.

Credit: Jeff Fitlow/Rice University
Rice University chemist Junrong Zheng will use his Packard Foundation award to build a spectrometer that can determine the conformation of molecules in three dimensions.

Credit: Jeff Fitlow/Rice University

Abstract:
Junrong Zheng's techniques to see the fine details of how molecules interact have earned the young Rice University scientist a highly prestigious Packard Fellowship.

Rice's Zheng wins Packard Fellowship: Chemist will build spectrometer to analyze molecules in 3-D

Houston, TX | Posted on October 20th, 2011

Zheng and his team of postdoctoral researchers and graduate students will use the five-year grant that comes with the fellowship to build a laser-based spectroscopic device to easily see the conformation -- the shape and orientation -- of any molecule, no matter how complex.

Zheng, an assistant professor of chemistry who joined Rice in 2008, discovered a method to analyze the natural vibrations of the bonds that hold molecules together in a way that can tell him how far apart those molecules are. Further work led to a 2-D method for finding the angles at which the atoms within a molecule bond.

Now Zheng is preparing to leap into real-time, three-dimensional analysis of molecular conformations. Doing so will take some time and effort -- and money -- to build a machine capable of looking at molecular details in a way nobody has before. A successful effort could mean a quantum leap in the study of chemical reactions, protein folding, drug/protein interactions, doped nanomaterials and molecular recognition.

Zheng anticipates it will take five years to build the machine, a full-spectrum, multidimensional spectrometer that can read a wide range of frequencies from the high infrared to the low terahertz. It will allow researchers to take snapshots of molecules that could provide in seconds data that now takes days to acquire.

He knows firsthand about that process; he published a paper this year that detailed his technique for acquiring 3-D data from a specific molecule.

The paper in the Journal of Physical Chemistry described how Zheng and his team analyzed the conformations of a small molecule, 1-cyanovinyl acetate, known to contain a wide range of vibrational energy.

Theoretical calculations of the five possible conformations of the molecule let them compare what they saw through physical analysis with a two-dimensional infrared spectrometer designed by Zheng and his team. The comparison showed theory and experimental results in virtually perfect alignment.

Zheng believed results for molecules bigger than the fast-moving 1-cyanovinyl acetate would be just as good because their rotations are slower.

Zheng said the machine, when finished, will probably be the only one of its kind in the world. The goal is the development of a sophisticated yet routine analytic tool for determining molecular structure for chemists and researchers who are not laser specialists.

"Hopefully, we can make it very easy to use, so everybody can go buy one," he said.

The David and Lucille Packard Foundation names 16 award winners every year from among 100 nominees who represent 50 American research universities. Zheng is the fifth Rice researcher to win. He joins Rice physicists Thomas Killian and Douglas Natelson and Earth scientists Cin-Ty Lee and Rajdeep Dasgupta.

"I didn't anticipate this award, because I know some very important people in our field have won it," Zheng said. "I know it's very competitive, so it means people appreciate my work."

####

For more information, please click here

Contacts:
Mike Williams

713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Chemistry

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Announcements

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Tools

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Photonics/Optics/Lasers

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Hybrid material may outperform graphene in several applications: A structure comprising a molybdenum disulfide monolayer on an azobenzene substrate could be used to build a highly compactable and malleable quasi-two-dimensional transistor powered by light February 28th, 2019

Researchers move closer to practical photonic quantum computing: New method fills critical need to measure large-scale quantum correlation of single photons February 28th, 2019

AIM Photonics Attends OFC 2019—the Optical Networking and Communication Conference & Exhibition to Share World-Class Capabilities and Partnership Opportunity Updates February 28th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project