Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Northwestern researchers create nanomaterials that mimic structure of natural materials

Abstract:
A team of Northwestern scientists recently made considerable improvements in designing nanomaterials that can be used in various areas of research due to their unique physical properties.

Northwestern researchers create nanomaterials that mimic structure of natural materials

Chicago, IL | Posted on October 18th, 2011

Nanotechnologists under Prof. Chad Mirkin collaborated with theorists under Prof. George Schatz to create crystalline nanomaterials from nanoparticles and DNA.

Researchers in Mirkin's lab were first able to create these nanomaterials 15 years ago, but until recently, their structure did not resemble other natural crystalline materials, like silicon, Schatz said. This group of scientists, however, was able to work together to create materials possessing this structure, improving the quality and utility of such nanomaterials.

The goal of the research is to "bond" nanomaterials with strands of DNA, building new particles that can enhance fields like energy generation and biomedicine, according to a University press release. By creating this model, nanomaterials can be built into crystalline structures such as those found in nature.

"Now, there are more powerful things you can do with them," Schatz said. "You can use these kinds of materials for DNA and protein defectors and nucleic acids."

As a theorist, Schatz worked with graduate students and postdoctoral researchers to create a model designed to determine which structures will be created under which conditions.

"The key to the project was that the predictions of the model and synthesis agreed," Schatz said. "That meant the rules were correct."

Although Mirkin and Schatz concentrate in different scientific fields, they have worked together before. However, Schatz emphasized that the professors did not initiate this project.

"The project emerged through the interaction of students," he said. "Students were able to iterate in development of rules and models. That interaction led to the final result."

Graduate students Rob Macfarlane and Matt Jones from Mirkin's lab worked closely with Nadine Harris, a postdoctoral researcher from Schatz's lab, to design these crystalline lattice structures.

Macfarlane took on a similar project in 2008 and published a paper discussing ordered nanomaterials. He remained interested in further improving these nanomaterials even after many of his colleagues from the 2008 project left the University, and he reached out to James and Harris, whose respective interests in triangular particles and theoretics complemented his work in spherical particles.

"When each of us needs someone else's expertise, we go to them," Macfarlane said. "One of the great things about Northwestern University science is it's very collaborative. At other places, people have their niches. Here, everyone helps out."

Jones said the project required a team with expertise of scientific concepts from different fields.

"You need people who understand DNA, material scientists and theorists," he said. "It builds on a lot of different disciplines. It could really only happen at a place like Northwestern."

According to Schatz, this reputation brings in funding for further research, which in turn leads to additional opportunities for students. Weinberg freshman Hannah Dunn, a chemistry major, said the nanomaterial research is an exciting accomplishment for NU researchers.

"I chose Northwestern because it has a lot of research and it has the funding of a large research institution," Dunn said. "It really influenced my decision to come here."

####

Contacts:

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Discoveries

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Materials/Metamaterials

Chains of nanogold forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Nanobiotechnology

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic