Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > AVS International Symposium to Feature Frontier Science from the World of Materials, Manufacturing, Medicine, and More

The AVS 58th International Symposium & Exhibition will be held Oct. 30 - Nov. 4, 2011, at the Nashville Convention Center in Nashville, Tenn. More than 1,200 talks will be delivered on cutting-edge issues covering new energy frontiers, graphene and related materials, nanomanufacturing, printable electronics, and more. The event will also feature two evenings of poster presentations and an exhibition featuring related equipment and services. AVS offers complimentary press registration to journalists. Registration information can be found at the end of this release. Journalists may also remotely access meeting information through AVS's online pressroom.

AVS International Symposium to Feature Frontier Science from the World of Materials, Manufacturing, Medicine, and More

Nashville, TN | Posted on October 17th, 2011

The following summaries are highlights of the meeting's many talks.


Hey, bacteria, get off of my boat!

Opportunistic seaweed, barnacles, and bacterial films can quickly befoul almost any underwater surface, but researchers are now using advances in nanotechnology and materials science to design environmentally friendly underwater coatings that repel these biological stowaways. Biological build-up on the undersides of boats can increase drag, adding to fuel costs, and colonies of sea life can also disrupt the operation of ocean sensors and other underwater equipment. Anti-fouling paints, designed to kill the colonizers, often contain heavy metals or other toxic chemicals that might accumulate in the environment and unintentionally harm fish or other marine organisms. To replace toxic paints, scientists and engineers are now looking for ways to manipulate the physical properties of surface coatings to discourage biological colonization. The researchers, led by Gabriel Lopez of Duke University, focused on a class of materials called stimuli-responsive surfaces that alter their physical or chemical properties in response to a stimulus, such as a temperature change. Currently the group experiments on two different types of stimuli-responsive surfaces: one that changes its texture in response to temperature, and the other in response to an applied voltage. When the surface is exposed to the appropriate stimuli, it will wrinkle on the micro- or nano-scale, shaking off slimy colonies of marine bacteria in a manner similar to how a horse might twitch its skin to shoo away flies.

Presentation MB-MoM-9, "Micro to Nanostructured Stimuli-Responsive Surfaces for Study and Control of Bioadhesion," is at 11 a.m. on Monday, Oct. 31.

Being clean: It's more than getting rid of bacteria

Even after bacteria have been killed, the biomolecules they leave behind can still cause illness. Researchers at the University of California at Berkeley and the University of Maryland at College Park have teamed up to study how low-temperature plasmas can deactivate these potentially dangerous biomolecules, which may be left behind by conventional sterilization methods.

"Bacteria are known to create virulence factors - biomolecules expressed and secreted by pathogens - even if they have been killed," says David Graves, a professor working on the research at UC Berkeley's Department of Chemical and Biomolecular Engineering. Conventional sterilization methods, such as heating surgical equipment in an autoclave, can't effectively combat these molecules, which can cause severe medical problems. One example of such a biomolecule is lipopolysaccharide (LPS). Found in the membranes of E. coli bacteria, LPS can cause fever, low blood pressure, and breathing problems, and may even lead to multiple organ failure and death. Graves' research team is using a vacuum-beam system to study Lipid A, the major immune-stimulating region of LPS. The team's results suggest that plasma-generated vacuum ultraviolet light can reduce the toxicity of Lipid A. Their work is another step toward a clearer understanding of how low-temperature plasmas work and a good indication that "clean" can indeed be redefined.

Presentation PS+BI-MoA-10, "Plasma Deactivation of Pyrogenic Biomolecules: Vacuum Ultraviolet Photon and Radical Beam Effects on Lipid A," will be presented by Graves's doctoral student, Ting-Ling Chung, at 5 p.m. on Monday, Oct. 31.


Aiming for inexpensive hydrogen storage

A team of researchers has discovered that, with a minor modification, inexpensive aluminum is able to both break apart molecular hydrogen and capture the individual atoms, potentially leading to a robust and affordable fuel storage system. As a potential fuel, molecular hydrogen must be stored under great pressure and at very low temperatures. An alternative storage solution is a material that could efficiently hold individual hydrogen atoms and release them on demand. This solution requires breaking the chemical bonds between two hydrogen atoms, a process known as hydrogen activation, and is typically accomplished with the help of an expensive "noble metal" catalyst. In the quest to find an equally efficient, yet less-expensive, alternative, lead researcher Yves J. Chabal of the University of Texas at Dallas and Santanu Chaudhuri at Washington State University decided to experiment with aluminum. Under normal conditions aluminum doesn't react with molecular hydrogen, but a way to unlock its storage potential, the researchers discovered, is to impregnate its surface with the metal titanium. Their studies revealed that in areas doped with titanium, atomic hydrogen was being produced on the aluminum surface. The titanium then further advanced the process by helping the hydrogen bind to the aluminum to form aluminum hydride. If used as a fuel-storage device, the aluminum hydride could be made to release its store of hydrogen by simply raising its temperature. "Although titanium may not be the best catalytic center for fully reversible aluminum hydride formation, the results prove for the first time that titanium-doped aluminum can activate hydrogen in ways that are comparable to expensive and less-abundant catalyst metals such as palladium and other near-surface alloys consisting of similar noble metals and their bimetallic analogs," Chaudhuri explains.

Presentation SS1-TuM-4 "Turning Aluminum into a Noble-metal like Catalyst for Low Temperature Molecular Hydrogen Activation," will be presented by Irinder Chopra, the lead student on the project, at 9a.m. on Tuesday, Nov. 1.

Ready for their close-up: Proteins caught ‘in action' in intact cells using new electron microscopy technique
Researchers at Vanderbilt University in Nashville, Tenn., have come up with a promising new technique that uses a scanning transmission electron microscope (STEM) to view proteins tagged with gold nanoparticles in whole cells. Determining the locations of proteins in a whole cell could help researchers study cancer processes, as well as understand how viruses break into healthy cells and hijack them. Modern methods of studying protein interactions have limitations: optical microscopes can capture sweeping vistas of whole, live cells, but the devices are not sensitive enough to zoom in for a close-up on individual proteins. Transmission electron microscopes (TEM), on the other hand, can resolve the locations of individual proteins; but eukaryotic cells have to be sliced into thin sections to be viewed this way. To detect proteins in a whole cell, the Vanderbilt scientists took advantage of a STEM analysis technique called annular dark-field (ADF) imaging. ADF detectors are sensitive to heavy elements like gold, lead, and platinum, and much less sensitive to materials like water and carbon - the main components of a cell. By tagging proteins with gold nanoparticles, the researchers made the proteins stand out in strong relief from the otherwise signal-less cellular environment. Though no longer alive, the cells are preserved in as natural a state as possible, surrounded by liquid that is enclosed by a microchip device that can withstand the vacuum of the STEM. To date, the team has achieved a resolution of about 4 nanometers - ten times better than state-of-the-art fluorescence microscopy. The benefits of the new technique could extend beyond biology to the energy and materials sciences, too, giving researchers tools that could help them design better car batteries, for example.

Presentation IS+AS+SS-TuM3, "Imaging Tagged Proteins in Whole Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopy," is at 8:40 a.m. on Tuesday, Nov. 1.


Graphene applications in electronics and photonics

Graphene, which is made of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice, is the world's thinnest material - and one of the hardest and strongest. Phaedon Avouris, manager of the Nanometer Scale Science and Technology division at IBM's T.J. Watson Research Center in Yorktown Heights, N.Y., and his group strive to understand how graphene behaves in real-world technology applications and to use that knowledge to design, build, and test graphene-based devices and circuits. "While graphene has a number of extremely useful properties, including very fast electron mobility, high mechanical strength, and excellent thermal conductivity, the interactions of graphene with its environment - for example, with the substrate it is placed on, the ambient environment, or other materials in a device structure - can drastically affect and change its intrinsic properties," Avouris says. Going forward, graphene researchers need to improve the quality of synthetic graphene and to study its properties under conditions relevant to technology, says Avouris, who is "very optimistic" about the future of graphene in both electronics and photonics and anticipates the development of additional new applications.

Presentation NS-WeM-4 "Graphene-based Electronics and Optoelectronics" is at 9 a.m. on Wednesday, Nov. 2.

"Ay, there's the rub": Researchers strive to identify the atomic origins of wear

"Wear is so common in sliding systems that it has acquired this air of inevitability," says Greg Sawyer, a professor in mechanical engineering at the University of Florida who leads a team of researchers hoping to overturn this assumption. Sawyer and his collaborators have succeeded in modifying polytetrafluoroethylene (PTFE), the ubiquitous, already low-friction material also known as Teflon, to make it "nearly a million times more wear-resistant." By applying the lessons learned from this and other such success stories, the researchers are attempting to identify, and then eliminate, the atomic and molecular origins of wear. Sawyer and his team have come up with a number of hypotheses to explain how frictional forces might rip off or grind away bits of material in particular sliding systems. To test their hypotheses, the scientists use atomic force microscopes to create atomic-scale images of surfaces and use finely tuned instruments to measure the minute forces that occur as materials slide against each other. Once the researchers identify a factor that contributes to system wear, they try to design a way to stop it. In the instance of the ultra-low-wear PTFE, the researchers embedded alumina nano-particles in the polymer, which dramatically reduced wear. And this effect isn't limited to PTFE. Other nano-particle-filled plastic composites have been shown to display a decreased sliding coefficient of friction, although scientists are still investigating the precise mechanisms that result in the reduced wear. Sawyer's team studies a number of low-wear systems, including polymers, metals, and ceramics.

Presentation TR-WeA7, "Going No Wear?," is at 4 p.m. on Wednesday, Nov. 2.

Chemical engineers decipher mystery of neurofibrillary tangle formation in Alzheimer's brains

Neurofibrillary tangles - odd, twisted clumps of protein found within nerve cells - are a pathological hallmark of Alzheimer's disease. Now, new research by Eva Chi, an assistant professor of chemical engineering at the University of New Mexico, and her colleagues suggests that changes to the lipid membranes of nerve cells initiate tangle formation. "Proteins in the brain do not aggregate spontaneously to form amyloid fibrils to cause diseases," says Chi. Rather, she explains, "there are physiological triggers that cause these proteins to start aggregating and the lipid membrane may serve such a role." Using a combination of techniques, including fluorescence microscopy and X-ray and neutron scattering imaging, Chi and her colleagues found that tau proteins inside nerve cells interact strongly with negatively charged lipids, which are found on the inner surface of cell membranes. When tau proteins interact with the lipid membrane, they can damage the structure of the membrane, "which can possibly make the membranes ‘leaky' and cause neurons to die," Chi explains. "There has been much uncertainly about what causes neurodegeneration in these diseases, but now the field is converging on the idea that neuronal death in Alzheimer's disease is caused by the proteins acquiring toxicity as they aggregate." The research suggests that compounds that prevent the proteins from interacting with the lipid membrane - or protect the membrane from being disrupted - could offer hope to Alzheimer's patients.

Presentation NT+AS-WeA8, "Interaction of Alzheimer's Disease Tau Protein with Model Lipid Membranes," is at 4:20 p.m. on Wednesday, Nov. 2.


Plutonium's unusual interactions with clay may minimize leakage of nuclear waste
As a first line of defense, steel barrels buried deep underground are designed to keep dangerous plutonium waste from seeping into the soil and surrounding bedrock. But after several thousand years, those barrels will naturally begin to disintegrate due to corrosion. A team of scientists at Argonne National Lab (ANL) in Argonne, Ill., have determined what may happen to this toxic waste once its container disappears. With its half-life of 24 thousand years, plutonium is notoriously difficult to work with, and the result is that very little is known about its chemistry. Also, unlike other ions, plutonium bunches into nanometer-sized clusters in water, and almost nothing is known about how these clusters interact with clay surfaces. Using a range of X-ray scattering techniques, the Argonne team reconstructed images of thin layers of plutonium molecules sitting on the surface of a mineral called muscovite. The scientists discovered that nanoclusters of plutonium adhere much more strongly to mineral surfaces than individual plutonium ions would be expected to. The result is that plutonium tends to become trapped on the surface of the clay - a process that could help contain the spread of plutonium into the environment. These are fundamental studies, the researchers caution, and probably will not have an immediate impact on the design of plutonium-containing structures; however, they say, this work shows the importance of studying plutonium's surface reactivity at a molecular level, with potential future benefits for nuclear waste containment strategies.
Presentation AC+TF-ThA-1, "Plutonium Sorption and Reactivity at the Solid/Water Interface," is at 2 p.m. on Thursday, Nov. 3.


Scientists carve nanowires out of ultrananocrystalline diamond thin films

A team of scientists working at Argonne National Laboratory's (ANL) Center for Nanoscale Materials has successfully carved ultrananocrystalline diamond (UNCD) thin films into nanowires - boosting the material's functionality to the next level. UNCD thin films are a special form of diamond invented at ANL, and the subject of tremendous interest because of the material's highly desirable ability to alter its electrical properties when the chemical bonding between grain boundaries is modified. "It's a highly attractive carbon-based material with a wide range of applications in communications, medicine, and defense," notes Anirudha Sumant, a materials scientist at ANL. A primary motive behind their studies, he explains, is to understand the electrical transport properties of UNCD when it's fabricated into a nanowire geometry. They also want to see how these properties can be altered by changing chemical bonding at the grain boundary and by taking advantage of increased surface-to-volume ratio at the same time. "We've demonstrated a pathway to fabricate UNCD nanowires, with widths as small as 30 nanometers at a thickness of 40nanometers, by using a top-down fabrication approach that combines electron beam lithography and reactive ion etching process," says Sumant. They also discovered that among the exceptional electrical properties of the UNCD nanowires, it demonstrates a resistance that is extremely sensitive to the adsorption of gas molecules at the grain boundaries. The discovery opens up new possibilities for the fabrication of advanced nanoscale sensors, according to the team.

Presentation MN-FrM6 "Fabrication and Characterization of Structural and Electrical Properties of Ultrananocrystalline Diamond Nanowires" is at 10 a.m. on Friday, Nov. 4.


The Nashville Convention Center is located eight miles away from the Nashville International Airport at 601 Commerce St., Nashville, Tennessee, 37203.


The AVS Pressroom will be located in the Nashville Convention Center. Your complimentary media badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The media badge will admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday evening and the Awards Ceremony and Reception on Wednesday night. Pressroom hours are Monday-Thursday, 8-5 p.m.

To register, please complete the media registration form (available online at and fax or e-mail by October 15 to:

Della Miller, AVS
Fax: 530-896-0487


About American Institute of Physics (AIP) /AVS
Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

For more information, please click here

Catherine Meyers

Della Miller
Fax: 530-896-0487

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Main meeting website:

Technical Program:

Housing and Travel Information:

Related News Press

News and information

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014


Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014


Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014


NRL Researchers Develop Harder Ceramic for Armor Windows April 29th, 2014

XPRIZE Opens Team Registration for $2 Million Wendy Schmidt Ocean Health XPRIZE: Teams From Private, Public, and Social Sectors Encouraged to Compete in Global Competition to Revolutionize Ocean pH Sensor Technology February 12th, 2014

Paving the way for real-world nanotechnology products September 29th, 2013

Zycraft Completes Phase 1 Development of Vigilant Unmanned Surface Vessel September 20th, 2013


Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014


Silicene Labs Announces the Launch of 2D Materials Briefing Book™ and 2D Materials Road-Heat Map™: Contributors Include One of the World's Foremost 2D Materials Scientists July 25th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014


Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014


Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014


NNCO Announces an Interactive Webinar: Progress Review on the Coordinated Implementation of the National Nanotechnology Initiative 2011 Environmental, Health, and Safety Research Strategy July 23rd, 2014

Harris & Harris Group to Host Conference Call on Second-Quarter 2014 Financial Results on August 15, 2014 July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014


NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014


Martini Tech Inc. becomes the exclusive distributor for Yoshioka Seiko Co. porous chucks for Europe and North America July 20th, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE