Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > AVS International Symposium to Feature Frontier Science from the World of Materials, Manufacturing, Medicine, and More

The AVS 58th International Symposium & Exhibition will be held Oct. 30 - Nov. 4, 2011, at the Nashville Convention Center in Nashville, Tenn. More than 1,200 talks will be delivered on cutting-edge issues covering new energy frontiers, graphene and related materials, nanomanufacturing, printable electronics, and more. The event will also feature two evenings of poster presentations and an exhibition featuring related equipment and services. AVS offers complimentary press registration to journalists. Registration information can be found at the end of this release. Journalists may also remotely access meeting information through AVS's online pressroom.

AVS International Symposium to Feature Frontier Science from the World of Materials, Manufacturing, Medicine, and More

Nashville, TN | Posted on October 17th, 2011

The following summaries are highlights of the meeting's many talks.


Hey, bacteria, get off of my boat!

Opportunistic seaweed, barnacles, and bacterial films can quickly befoul almost any underwater surface, but researchers are now using advances in nanotechnology and materials science to design environmentally friendly underwater coatings that repel these biological stowaways. Biological build-up on the undersides of boats can increase drag, adding to fuel costs, and colonies of sea life can also disrupt the operation of ocean sensors and other underwater equipment. Anti-fouling paints, designed to kill the colonizers, often contain heavy metals or other toxic chemicals that might accumulate in the environment and unintentionally harm fish or other marine organisms. To replace toxic paints, scientists and engineers are now looking for ways to manipulate the physical properties of surface coatings to discourage biological colonization. The researchers, led by Gabriel Lopez of Duke University, focused on a class of materials called stimuli-responsive surfaces that alter their physical or chemical properties in response to a stimulus, such as a temperature change. Currently the group experiments on two different types of stimuli-responsive surfaces: one that changes its texture in response to temperature, and the other in response to an applied voltage. When the surface is exposed to the appropriate stimuli, it will wrinkle on the micro- or nano-scale, shaking off slimy colonies of marine bacteria in a manner similar to how a horse might twitch its skin to shoo away flies.

Presentation MB-MoM-9, "Micro to Nanostructured Stimuli-Responsive Surfaces for Study and Control of Bioadhesion," is at 11 a.m. on Monday, Oct. 31.

Being clean: It's more than getting rid of bacteria

Even after bacteria have been killed, the biomolecules they leave behind can still cause illness. Researchers at the University of California at Berkeley and the University of Maryland at College Park have teamed up to study how low-temperature plasmas can deactivate these potentially dangerous biomolecules, which may be left behind by conventional sterilization methods.

"Bacteria are known to create virulence factors - biomolecules expressed and secreted by pathogens - even if they have been killed," says David Graves, a professor working on the research at UC Berkeley's Department of Chemical and Biomolecular Engineering. Conventional sterilization methods, such as heating surgical equipment in an autoclave, can't effectively combat these molecules, which can cause severe medical problems. One example of such a biomolecule is lipopolysaccharide (LPS). Found in the membranes of E. coli bacteria, LPS can cause fever, low blood pressure, and breathing problems, and may even lead to multiple organ failure and death. Graves' research team is using a vacuum-beam system to study Lipid A, the major immune-stimulating region of LPS. The team's results suggest that plasma-generated vacuum ultraviolet light can reduce the toxicity of Lipid A. Their work is another step toward a clearer understanding of how low-temperature plasmas work and a good indication that "clean" can indeed be redefined.

Presentation PS+BI-MoA-10, "Plasma Deactivation of Pyrogenic Biomolecules: Vacuum Ultraviolet Photon and Radical Beam Effects on Lipid A," will be presented by Graves's doctoral student, Ting-Ling Chung, at 5 p.m. on Monday, Oct. 31.


Aiming for inexpensive hydrogen storage

A team of researchers has discovered that, with a minor modification, inexpensive aluminum is able to both break apart molecular hydrogen and capture the individual atoms, potentially leading to a robust and affordable fuel storage system. As a potential fuel, molecular hydrogen must be stored under great pressure and at very low temperatures. An alternative storage solution is a material that could efficiently hold individual hydrogen atoms and release them on demand. This solution requires breaking the chemical bonds between two hydrogen atoms, a process known as hydrogen activation, and is typically accomplished with the help of an expensive "noble metal" catalyst. In the quest to find an equally efficient, yet less-expensive, alternative, lead researcher Yves J. Chabal of the University of Texas at Dallas and Santanu Chaudhuri at Washington State University decided to experiment with aluminum. Under normal conditions aluminum doesn't react with molecular hydrogen, but a way to unlock its storage potential, the researchers discovered, is to impregnate its surface with the metal titanium. Their studies revealed that in areas doped with titanium, atomic hydrogen was being produced on the aluminum surface. The titanium then further advanced the process by helping the hydrogen bind to the aluminum to form aluminum hydride. If used as a fuel-storage device, the aluminum hydride could be made to release its store of hydrogen by simply raising its temperature. "Although titanium may not be the best catalytic center for fully reversible aluminum hydride formation, the results prove for the first time that titanium-doped aluminum can activate hydrogen in ways that are comparable to expensive and less-abundant catalyst metals such as palladium and other near-surface alloys consisting of similar noble metals and their bimetallic analogs," Chaudhuri explains.

Presentation SS1-TuM-4 "Turning Aluminum into a Noble-metal like Catalyst for Low Temperature Molecular Hydrogen Activation," will be presented by Irinder Chopra, the lead student on the project, at 9a.m. on Tuesday, Nov. 1.

Ready for their close-up: Proteins caught ‘in action' in intact cells using new electron microscopy technique
Researchers at Vanderbilt University in Nashville, Tenn., have come up with a promising new technique that uses a scanning transmission electron microscope (STEM) to view proteins tagged with gold nanoparticles in whole cells. Determining the locations of proteins in a whole cell could help researchers study cancer processes, as well as understand how viruses break into healthy cells and hijack them. Modern methods of studying protein interactions have limitations: optical microscopes can capture sweeping vistas of whole, live cells, but the devices are not sensitive enough to zoom in for a close-up on individual proteins. Transmission electron microscopes (TEM), on the other hand, can resolve the locations of individual proteins; but eukaryotic cells have to be sliced into thin sections to be viewed this way. To detect proteins in a whole cell, the Vanderbilt scientists took advantage of a STEM analysis technique called annular dark-field (ADF) imaging. ADF detectors are sensitive to heavy elements like gold, lead, and platinum, and much less sensitive to materials like water and carbon - the main components of a cell. By tagging proteins with gold nanoparticles, the researchers made the proteins stand out in strong relief from the otherwise signal-less cellular environment. Though no longer alive, the cells are preserved in as natural a state as possible, surrounded by liquid that is enclosed by a microchip device that can withstand the vacuum of the STEM. To date, the team has achieved a resolution of about 4 nanometers - ten times better than state-of-the-art fluorescence microscopy. The benefits of the new technique could extend beyond biology to the energy and materials sciences, too, giving researchers tools that could help them design better car batteries, for example.

Presentation IS+AS+SS-TuM3, "Imaging Tagged Proteins in Whole Eukaryotic Cells in Liquid with Scanning Transmission Electron Microscopy," is at 8:40 a.m. on Tuesday, Nov. 1.


Graphene applications in electronics and photonics

Graphene, which is made of a one-atom-thick layer of carbon atoms in a honeycomb-like lattice, is the world's thinnest material - and one of the hardest and strongest. Phaedon Avouris, manager of the Nanometer Scale Science and Technology division at IBM's T.J. Watson Research Center in Yorktown Heights, N.Y., and his group strive to understand how graphene behaves in real-world technology applications and to use that knowledge to design, build, and test graphene-based devices and circuits. "While graphene has a number of extremely useful properties, including very fast electron mobility, high mechanical strength, and excellent thermal conductivity, the interactions of graphene with its environment - for example, with the substrate it is placed on, the ambient environment, or other materials in a device structure - can drastically affect and change its intrinsic properties," Avouris says. Going forward, graphene researchers need to improve the quality of synthetic graphene and to study its properties under conditions relevant to technology, says Avouris, who is "very optimistic" about the future of graphene in both electronics and photonics and anticipates the development of additional new applications.

Presentation NS-WeM-4 "Graphene-based Electronics and Optoelectronics" is at 9 a.m. on Wednesday, Nov. 2.

"Ay, there's the rub": Researchers strive to identify the atomic origins of wear

"Wear is so common in sliding systems that it has acquired this air of inevitability," says Greg Sawyer, a professor in mechanical engineering at the University of Florida who leads a team of researchers hoping to overturn this assumption. Sawyer and his collaborators have succeeded in modifying polytetrafluoroethylene (PTFE), the ubiquitous, already low-friction material also known as Teflon, to make it "nearly a million times more wear-resistant." By applying the lessons learned from this and other such success stories, the researchers are attempting to identify, and then eliminate, the atomic and molecular origins of wear. Sawyer and his team have come up with a number of hypotheses to explain how frictional forces might rip off or grind away bits of material in particular sliding systems. To test their hypotheses, the scientists use atomic force microscopes to create atomic-scale images of surfaces and use finely tuned instruments to measure the minute forces that occur as materials slide against each other. Once the researchers identify a factor that contributes to system wear, they try to design a way to stop it. In the instance of the ultra-low-wear PTFE, the researchers embedded alumina nano-particles in the polymer, which dramatically reduced wear. And this effect isn't limited to PTFE. Other nano-particle-filled plastic composites have been shown to display a decreased sliding coefficient of friction, although scientists are still investigating the precise mechanisms that result in the reduced wear. Sawyer's team studies a number of low-wear systems, including polymers, metals, and ceramics.

Presentation TR-WeA7, "Going No Wear?," is at 4 p.m. on Wednesday, Nov. 2.

Chemical engineers decipher mystery of neurofibrillary tangle formation in Alzheimer's brains

Neurofibrillary tangles - odd, twisted clumps of protein found within nerve cells - are a pathological hallmark of Alzheimer's disease. Now, new research by Eva Chi, an assistant professor of chemical engineering at the University of New Mexico, and her colleagues suggests that changes to the lipid membranes of nerve cells initiate tangle formation. "Proteins in the brain do not aggregate spontaneously to form amyloid fibrils to cause diseases," says Chi. Rather, she explains, "there are physiological triggers that cause these proteins to start aggregating and the lipid membrane may serve such a role." Using a combination of techniques, including fluorescence microscopy and X-ray and neutron scattering imaging, Chi and her colleagues found that tau proteins inside nerve cells interact strongly with negatively charged lipids, which are found on the inner surface of cell membranes. When tau proteins interact with the lipid membrane, they can damage the structure of the membrane, "which can possibly make the membranes ‘leaky' and cause neurons to die," Chi explains. "There has been much uncertainly about what causes neurodegeneration in these diseases, but now the field is converging on the idea that neuronal death in Alzheimer's disease is caused by the proteins acquiring toxicity as they aggregate." The research suggests that compounds that prevent the proteins from interacting with the lipid membrane - or protect the membrane from being disrupted - could offer hope to Alzheimer's patients.

Presentation NT+AS-WeA8, "Interaction of Alzheimer's Disease Tau Protein with Model Lipid Membranes," is at 4:20 p.m. on Wednesday, Nov. 2.


Plutonium's unusual interactions with clay may minimize leakage of nuclear waste
As a first line of defense, steel barrels buried deep underground are designed to keep dangerous plutonium waste from seeping into the soil and surrounding bedrock. But after several thousand years, those barrels will naturally begin to disintegrate due to corrosion. A team of scientists at Argonne National Lab (ANL) in Argonne, Ill., have determined what may happen to this toxic waste once its container disappears. With its half-life of 24 thousand years, plutonium is notoriously difficult to work with, and the result is that very little is known about its chemistry. Also, unlike other ions, plutonium bunches into nanometer-sized clusters in water, and almost nothing is known about how these clusters interact with clay surfaces. Using a range of X-ray scattering techniques, the Argonne team reconstructed images of thin layers of plutonium molecules sitting on the surface of a mineral called muscovite. The scientists discovered that nanoclusters of plutonium adhere much more strongly to mineral surfaces than individual plutonium ions would be expected to. The result is that plutonium tends to become trapped on the surface of the clay - a process that could help contain the spread of plutonium into the environment. These are fundamental studies, the researchers caution, and probably will not have an immediate impact on the design of plutonium-containing structures; however, they say, this work shows the importance of studying plutonium's surface reactivity at a molecular level, with potential future benefits for nuclear waste containment strategies.
Presentation AC+TF-ThA-1, "Plutonium Sorption and Reactivity at the Solid/Water Interface," is at 2 p.m. on Thursday, Nov. 3.


Scientists carve nanowires out of ultrananocrystalline diamond thin films

A team of scientists working at Argonne National Laboratory's (ANL) Center for Nanoscale Materials has successfully carved ultrananocrystalline diamond (UNCD) thin films into nanowires - boosting the material's functionality to the next level. UNCD thin films are a special form of diamond invented at ANL, and the subject of tremendous interest because of the material's highly desirable ability to alter its electrical properties when the chemical bonding between grain boundaries is modified. "It's a highly attractive carbon-based material with a wide range of applications in communications, medicine, and defense," notes Anirudha Sumant, a materials scientist at ANL. A primary motive behind their studies, he explains, is to understand the electrical transport properties of UNCD when it's fabricated into a nanowire geometry. They also want to see how these properties can be altered by changing chemical bonding at the grain boundary and by taking advantage of increased surface-to-volume ratio at the same time. "We've demonstrated a pathway to fabricate UNCD nanowires, with widths as small as 30 nanometers at a thickness of 40nanometers, by using a top-down fabrication approach that combines electron beam lithography and reactive ion etching process," says Sumant. They also discovered that among the exceptional electrical properties of the UNCD nanowires, it demonstrates a resistance that is extremely sensitive to the adsorption of gas molecules at the grain boundaries. The discovery opens up new possibilities for the fabrication of advanced nanoscale sensors, according to the team.

Presentation MN-FrM6 "Fabrication and Characterization of Structural and Electrical Properties of Ultrananocrystalline Diamond Nanowires" is at 10 a.m. on Friday, Nov. 4.


The Nashville Convention Center is located eight miles away from the Nashville International Airport at 601 Commerce St., Nashville, Tennessee, 37203.


The AVS Pressroom will be located in the Nashville Convention Center. Your complimentary media badge will allow you to utilize the pressroom to write, interview, collect new product releases, review material, or just relax. The media badge will admit you, free of charge, into the exhibit area, lectures, and technical sessions, as well as the Welcome Mixer on Monday evening and the Awards Ceremony and Reception on Wednesday night. Pressroom hours are Monday-Thursday, 8-5 p.m.

To register, please complete the media registration form (available online at and fax or e-mail by October 15 to:

Della Miller, AVS
Fax: 530-896-0487


About American Institute of Physics (AIP) /AVS
Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

For more information, please click here

Catherine Meyers

Della Miller
Fax: 530-896-0487

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Main meeting website:

Technical Program:

Housing and Travel Information:

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017


Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

Graphene/ Graphite

Researchers design one of the strongest, lightest materials known: Porous, 3-D forms of graphene developed at MIT can be 10 times as strong as steel but much lighter January 7th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017


NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Tracing barnacle's footprint August 19th, 2016

Novel anti-biofilm nano coating developed at Ben-Gurion U.: Offers significant anti-adhesive potential for a variety of medical and industrial applications April 25th, 2016


Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016


NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017


Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017


Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Going green with nanotechnology December 21st, 2016


Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Leti Will Demonstrate Fusion of Autonomous Car’s Senses: SIGMA FUSION’s Efficient, Sensor-based System Fits in a Microcontroller Platform, Anticipates Safety Requirements December 13th, 2016

Imec and Holst Centre Introduce World’s First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016


Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017


NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project