Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Shaken, not Stirred: Berkeley Lab Scientists Spy Molecular Maneuvers

Fluorescence microscope image of nanosheets (some overlapped and folded) formed by manually shaking a vial, labeled with Nile Red dye and depositing solution on an agarose substrate. (Zuckerman, et. al)
Fluorescence microscope image of nanosheets (some overlapped and folded) formed by manually shaking a vial, labeled with Nile Red dye and depositing solution on an agarose substrate. (Zuckerman, et. al)

Abstract:
Stir this clear liquid in a glass vial and nothing happens. Shake this liquid, and free-floating sheets of protein-like structures emerge, ready to detect molecules or catalyze a reaction. This isn't the latest gadget from James Bond's arsenal—rather, the latest research from the U. S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) scientists unveiling how slim sheets of protein-like structures self-assemble. This "shaken, not stirred" mechanism provides a way to scale up production of these two-dimensional nanosheets for a wide range of applications, such as platforms for sensing, filtration and templating growth of other nanostructures.

Shaken, not Stirred: Berkeley Lab Scientists Spy Molecular Maneuvers

Berkeley, CA | Posted on October 17th, 2011

"Our findings tell us how to engineer two-dimensional, biomimetic materials with atomic precision in water," said Ron Zuckermann, Director of the Biological Nanostructures Facility at the Molecular Foundry, a DOE nanoscience user facility at Berkeley Lab. "What's more, we can produce these materials for specific applications, such as a platform for sensing molecules or a membrane for filtration."

Zuckermann, who is also a senior scientist at Berkeley Lab, is a pioneer in the development of peptoids, synthetic polymers that behave like naturally occurring proteins without degrading. His group previously discovered peptoids capable of self-assembling into nanoscale ropes, sheets and jaws, accelerating mineral growth and serving as a platform for detecting misfolded proteins.

In this latest study, the team employed a Langmuir-Blodgett trough - a bath of water with Teflon-coated paddles at either end - to study how peptoid nanosheets assemble at the surface of the bath, called the air-water interface. By compressing a single layer of peptoid molecules on the surface of water with these paddles, said Babak Sanii, a post-doctoral researcher working with Zuckermann, "we can squeeze this layer to a critical pressure and watch it collapse into a sheet."

"Knowing the mechanism of sheet formation gives us a set of design rules for making these nanomaterials on a much larger scale," added Sanii.

To study how shaking affected sheet formation, the team developed a new device called the SheetRocker to gently rock a vial of peptoids from upright to horizontal and back again. This carefully controlled motion allowed the team to precisely control the process of compression on the air-water interface.

"During shaking, the monolayer of peptoids essentially compresses, pushing chains of peptoids together and squeezing them out into a nanosheet. The air-water interface essentially acts as a catalyst for producing nanosheets in 95% yield," added Zuckermann. "What's more, this process may be general for a wide variety of two-dimensional nanomaterials."

This research is reported in a paper titled, "Shaken, not stirred: Collapsing a peptoid monolayer to produce free-floating, stable nanosheets," appearing in the Journal of the American Chemical Society (JACS) and available in JACS online. Co-authoring the paper with Zuckermann and Sanii were Romas Kudirka, Andrew Cho, Neeraja Venkateswaran, Gloria Olivier, Alexander Olson, Helen Tran, Marika Harada and Li Tan.

This work at the Molecular Foundry was supported by DOE's Office of Science and the Defense Threat Reduction Agency.

The Molecular Foundry is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit science.energy.gov.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov

For more information, please click here

Contacts:
Aditi Risbud
(510)486-4861

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project