Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Notre Dame researchers awarded millions to develop radically new computers

Abstract:
Reflecting its worldwide leadership in the search for new computing technologies, the University of Notre Dame has received two of 12 prestigious grants for cutting-edge nanoelectronics research that were awarded recently by the Semiconductor Research Corporation's Nanoelectronics Research Initiative (SRC-NRI) and the National Science Foundation.

Notre Dame researchers awarded millions to develop radically new computers

Notre Dame, IN | Posted on October 11th, 2011

"Universities were only allowed to submit two proposals each to the program," says Peter Kilpatrick, McCloskey Dean of the College of Engineering. "The fact that both of Notre Dame's proposals were funded is a sign of the high quality and competitiveness nationally of our research in this critical field."

According to the program solicitation, the aim of the joint 12-grant program, which totals $20 million over four years, is to support the search for new technologies that can replace today's transistors. They build on previous research fostered by the SRC-NRI, which represents global computer chip manufacturers IBM, Intel, Texas Instruments, GLOBALFOUNDRIES and Micron Technology.

The two funded teams at Notre Dame—led by Wolfgang Porod, Frank M. Freimann Professor of Electrical and Computer Engineering and director of the Notre Dame Center for Nano Science and Technology (NDnano); and Craig Lent, Frank M. Freimann Professor of Engineering—are truly multidisciplinary, bringing together electrical engineers, chemists, physicists, computer scientists and biologists to tackle problems of immense complexity.

Porod and co-investigators Gary Bernstein, Xiaobo Hu, Michael Niemier, and Gyorgy Csaba, received $1.8 million ($1.6 million from the NSF and $200,000 from the SRC-NRI) to explore a radical new approach to computational "thinking"—an approach based not on the familiar binary logic of 1s and 0s, but on physics-inspired and brain-like wave activity. The research envisions a future in which computer chips contain millions of cores, and processing elements in networks model the brain's biological structure.

"This work will not merely lead to incremental improvements in information processing systems," says Porod, "but will open the door to an entirely new approach to computing and computer architecture."

Lent, along with colleagues Greg Snider, Alex Kandel, and Kenneth Henderson, were awarded $1.75 million ($1.55 million from NSF and $200,000 from SRC-NRI) to advance a similarly unconventional type of computing known as Quantum-dot Cellular Automata (QCA), which was pioneered at Notre Dame. In QCA, the familiar switches of current silicon-based transistors are replaced by single molecules that interact with neighboring molecules through changes in charge.

"Such molecular level computing has the potential to generate ultra-small devices that use very little power," says Lent. "Generating heat has been the limiting factor in making computer circuits smaller and smaller. In this collaborative effort between Engineering and Chemistry our aim is to design and build molecules specifically suited to the task."

Notre Dame has been focused on nanoelectronics research since the 1980s and is the lead institution in the SRC-NRI-funded Midwest Institute for Nanoelectronics Discovery (MIND), which is part of a network of 24 universities conducting nanotechnology research around the United States.

"The search for a new semiconductor device that will provide the U.S. with a leadership position in the global era of nanoelectronics relies on making discoveries at these kinds of advanced universities," said Jeff Welser, director of the Nanoelectronics Research Initiative for SRC. "These schools have the talent and capabilities needed to produce critical research that helps to raise both our national competitiveness and economic progress."

####

For more information, please click here

Contacts:
Wolfgang Porod
574-631-6376


Craig Lent
574-631-6992

Copyright © University of Notre Dame

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Chip Technology

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Announcements

Laboratorial Performance of Nanocomposite Membrane Improved in Water Purification July 28th, 2015

Perfect Optical Properties in Production of Aluminum Oxide Colloid Nanoparticles July 28th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Leti and Diabeloop Project Aims at Developing Artificial Pancreas for Diabetes Treatment July 22nd, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Smarter window materials can control light and energy July 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project