Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular sudoku: A team of scientists from the Catalan Institute of Nanotechnology, ICREA and UAB investigated the properties of a special kind of sudoku, made by assembling tiny molecules into a 3x3 square array

Abstract:
As reported this week in Nature Communications, the researchers used the atomically-sharp tip of a scanning tunneling microscope to move 1-nanometer sized molecules on top of a silver substrate. The tip is controlled with such great accuracy that it is possible to precisely choose the position of each molecule and build tiny molecular squares, crosses, and chains of controlled size and orientation. The same tip is then used as a mobile electrode to probe the electrical conductivity of the molecules as a function of their position in the array. Figures a-d show an example of such measurements: a represent the topography of a "sudoku" molecular cluster, whereas b-d show regions of high conductivity at different voltages. At low voltage, electrons prefer to pass through the corner molecules, whereas at high voltage, only the central molecule is conducting. This is so because the conductivity depends strongly on a small set of electronic states, which conduct electricity to the substrate, and these are modified by the presence of side-to-side neighbors.

Molecular sudoku: A team of scientists from the Catalan Institute of Nanotechnology, ICREA and UAB investigated the properties of a special kind of sudoku, made by assembling tiny molecules into a 3x3 square array

Barcelona, Spain | Posted on October 6th, 2011

The molecular conductance was found to vary strongly not only from one molecule to another, but also within each molecule, due to the possibility of exploiting different electron transport channels at different positions. Such conduction channels arise from the excitation of internal degrees of freedom of the molecules, such as atomic vibrations and magnetic coupling of the electronic spins. All together, these results demonstrate the intricacy and beauty of molecular electronics, providing a glimpse of its advantages, such as the fabrication of versatile miniaturized circuits, and challenges, which may prove harder to solve than a sudoku game.

Spin coupling and relaxation inside molecule-metal contacts
Aitor Mugarza1,2*, Cornelius Krull1,2, Roberto Robles2, Sebastian Stepanow1,2, Gustavo Ceballos1,2, Pietro Gambardella1,2,3,4

1 Catalan Institute of Nanotechnology (ICN), UAB Campus, E-08193 Barcelona, Spain
2 Centre d'Investigacions en Nanociència i Nanotecnologia (CIN2), UAB Campus, E-08193 Barcelona, Spain
3 Institució Catalana de Recerca i Estudis Avançats (ICREA)
4 Departament de Física, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain

DOI: 10.1038/ncomms1497
On-line versión will be published 4 October de 2011 a las 18:00 horas

####

For more information, please click here

Contacts:
Pietro Gambardella

Copyright © Institut Català de Nanotecnologia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Molecular Nanotechnology

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

Announcements

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Tools

Lightweight metal foams become bone hard and explosion proof after being nanocoated March 14th, 2019

Nanometrics Announces $80 Million Share Repurchase Program March 14th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project