Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Molecular sudoku: A team of scientists from the Catalan Institute of Nanotechnology, ICREA and UAB investigated the properties of a special kind of sudoku, made by assembling tiny molecules into a 3x3 square array

Abstract:
As reported this week in Nature Communications, the researchers used the atomically-sharp tip of a scanning tunneling microscope to move 1-nanometer sized molecules on top of a silver substrate. The tip is controlled with such great accuracy that it is possible to precisely choose the position of each molecule and build tiny molecular squares, crosses, and chains of controlled size and orientation. The same tip is then used as a mobile electrode to probe the electrical conductivity of the molecules as a function of their position in the array. Figures a-d show an example of such measurements: a represent the topography of a "sudoku" molecular cluster, whereas b-d show regions of high conductivity at different voltages. At low voltage, electrons prefer to pass through the corner molecules, whereas at high voltage, only the central molecule is conducting. This is so because the conductivity depends strongly on a small set of electronic states, which conduct electricity to the substrate, and these are modified by the presence of side-to-side neighbors.

Molecular sudoku: A team of scientists from the Catalan Institute of Nanotechnology, ICREA and UAB investigated the properties of a special kind of sudoku, made by assembling tiny molecules into a 3x3 square array

Barcelona, Spain | Posted on October 6th, 2011

The molecular conductance was found to vary strongly not only from one molecule to another, but also within each molecule, due to the possibility of exploiting different electron transport channels at different positions. Such conduction channels arise from the excitation of internal degrees of freedom of the molecules, such as atomic vibrations and magnetic coupling of the electronic spins. All together, these results demonstrate the intricacy and beauty of molecular electronics, providing a glimpse of its advantages, such as the fabrication of versatile miniaturized circuits, and challenges, which may prove harder to solve than a sudoku game.

Spin coupling and relaxation inside molecule-metal contacts
Aitor Mugarza1,2*, Cornelius Krull1,2, Roberto Robles2, Sebastian Stepanow1,2, Gustavo Ceballos1,2, Pietro Gambardella1,2,3,4

1 Catalan Institute of Nanotechnology (ICN), UAB Campus, E-08193 Barcelona, Spain
2 Centre d'Investigacions en Nanociència i Nanotecnologia (CIN2), UAB Campus, E-08193 Barcelona, Spain
3 Institució Catalana de Recerca i Estudis Avançats (ICREA)
4 Departament de Física, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain

DOI: 10.1038/ncomms1497
On-line versión will be published 4 October de 2011 a las 18:00 horas

####

For more information, please click here

Contacts:
Pietro Gambardella

Copyright © Institut Català de Nanotecnologia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Molecular Nanotechnology

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Assembly of nanoparticles proceeds like a zipper: Viruses and nanoparticles can be assembled into processable superlattice wires according to scientists from Aalto University Finland September 25th, 2017

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Tools

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

JPK Instruments announce partnership with Swiss company, Cytosurge AG. The partnership makes Cytosurge’s FluidFM® technology available on the JPK NanoWizard® AFM platform December 8th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

Deben reports on a new publication from scientists at La Trobe University in Australia where their CT500 stage is used in micro scanning tomography experiments to better understand ceramic matrix composites under load November 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project