Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists to Develop New Way of Electronic Computing: UC Riverside’s Roland Kawakami leads a four-year $1.85 multicampus research project aimed at speeding up applications that process large amounts of data

The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.
The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.

Abstract:
The University of California, Riverside has received a $1.85 million grant to develop a new way of computing that is beyond the scope of conventional silicon electronics.

Physicists to Develop New Way of Electronic Computing: UC Riverside’s Roland Kawakami leads a four-year $1.85 multicampus research project aimed at speeding up applications that process large amounts of data

Riverside, CA | Posted on October 6th, 2011

The goal of the project is to speed up applications that process large amounts of data such as internet searching, data compression, and image recognition.

The money is awarded to UC Riverside under the nationwide "Nanoelectronics for 2020 and Beyond" competition sponsored by the National Science Foundation and the Nanoelectronics Research Initiative.

"Conventional silicon electronics will soon face its ultimate limits," said Roland Kawakami, a professor of physics and astronomy and the four-year grant's principal investigator. "Our approach is to utilize the spin degree of freedom to store and process information, which will allow the functions of logic and memory to be fully integrated into a single chip."

Spin is a fundamental characteristic property of electrons which causes them to behave as tiny magnets with a "north" and "south" pole. Electrons can occupy different spin states corresponding to different orientations for the magnetic poles. For spin-based computing, data is held in the spin state of the electron.

Kawakami explained that unlike more traditional approaches to improve electronics by building a better transistor, the current project has a far more transformative approach.

"We are looking at a completely new architecture or framework for computing," he said. "This involves developing a new type of ‘building-block' device known as a magnetologic gate that will serve as the engine for this technology - similar to the role of the transistor in conventional electronics. In addition, we will develop and design the circuits needed to utilize this device for specific functions, such as searching, sorting, and forecasting."

A magnetologic gate consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes.

The research project, which began Sept. 15, is a multicampus effort being led by UC Riverside. The research group of Jing Shi, a UCR professor of physics and astronomy, will work closely with Kawakami's research group on the project. They will be joined by Ilya Krivorotov at UC Irvine; Lu Sham at UC San Diego; Igor Zutic at SUNY Buffalo, NY; and Hanan Dery and Hui Wu at the University of Rochester, NY.

"Our team consists of experts in spintronics, magnetoresistive memory, theoretical physics, circuit design, and CMOS integration, a technology for constructing integrated circuits," said Kawakami, a member of UCR's Center for Nanoscale Science and Engineering.

The project is based on two major breakthroughs in nanoelectronics: The concept of spin-based computing using a magnetologic gate designed by Sham's group at UC San Diego in 2007; and the demonstration of tunneling spin injection and spin transport in graphene by Kawakami's group in 2010.

"Bringing these two results together, we find that graphene is the most promising material for developing magnetologic gates in terms of high speed, low energy usage, and operation at room temperature," Kawakami said.

Most of the experimental work will be done at UCR and UC Irvine. The circuit design and theory will be done at UC San Diego, the University of Rochester, and SUNY Buffalo.
The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050


Media Relations
900 University Avenue
1156 Hinderaker Hall
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More about Roland Kawakami

Department of Physics and Astronomy

Center for Nanoscale Science and Engineering

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Spintronics

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

A new spin on reality July 15th, 2016

Chip Technology

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic