Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Physicists to Develop New Way of Electronic Computing: UC Riverside’s Roland Kawakami leads a four-year $1.85 multicampus research project aimed at speeding up applications that process large amounts of data

The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.
The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.

Abstract:
The University of California, Riverside has received a $1.85 million grant to develop a new way of computing that is beyond the scope of conventional silicon electronics.

Physicists to Develop New Way of Electronic Computing: UC Riverside’s Roland Kawakami leads a four-year $1.85 multicampus research project aimed at speeding up applications that process large amounts of data

Riverside, CA | Posted on October 6th, 2011

The goal of the project is to speed up applications that process large amounts of data such as internet searching, data compression, and image recognition.

The money is awarded to UC Riverside under the nationwide "Nanoelectronics for 2020 and Beyond" competition sponsored by the National Science Foundation and the Nanoelectronics Research Initiative.

"Conventional silicon electronics will soon face its ultimate limits," said Roland Kawakami, a professor of physics and astronomy and the four-year grant's principal investigator. "Our approach is to utilize the spin degree of freedom to store and process information, which will allow the functions of logic and memory to be fully integrated into a single chip."

Spin is a fundamental characteristic property of electrons which causes them to behave as tiny magnets with a "north" and "south" pole. Electrons can occupy different spin states corresponding to different orientations for the magnetic poles. For spin-based computing, data is held in the spin state of the electron.

Kawakami explained that unlike more traditional approaches to improve electronics by building a better transistor, the current project has a far more transformative approach.

"We are looking at a completely new architecture or framework for computing," he said. "This involves developing a new type of ‘building-block' device known as a magnetologic gate that will serve as the engine for this technology - similar to the role of the transistor in conventional electronics. In addition, we will develop and design the circuits needed to utilize this device for specific functions, such as searching, sorting, and forecasting."

A magnetologic gate consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes.

The research project, which began Sept. 15, is a multicampus effort being led by UC Riverside. The research group of Jing Shi, a UCR professor of physics and astronomy, will work closely with Kawakami's research group on the project. They will be joined by Ilya Krivorotov at UC Irvine; Lu Sham at UC San Diego; Igor Zutic at SUNY Buffalo, NY; and Hanan Dery and Hui Wu at the University of Rochester, NY.

"Our team consists of experts in spintronics, magnetoresistive memory, theoretical physics, circuit design, and CMOS integration, a technology for constructing integrated circuits," said Kawakami, a member of UCR's Center for Nanoscale Science and Engineering.

The project is based on two major breakthroughs in nanoelectronics: The concept of spin-based computing using a magnetologic gate designed by Sham's group at UC San Diego in 2007; and the demonstration of tunneling spin injection and spin transport in graphene by Kawakami's group in 2010.

"Bringing these two results together, we find that graphene is the most promising material for developing magnetologic gates in terms of high speed, low energy usage, and operation at room temperature," Kawakami said.

Most of the experimental work will be done at UCR and UC Irvine. The circuit design and theory will be done at UC San Diego, the University of Rochester, and SUNY Buffalo.
The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050


Media Relations
900 University Avenue
1156 Hinderaker Hall
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More about Roland Kawakami

Department of Physics and Astronomy

Center for Nanoscale Science and Engineering

Related News Press

Graphene

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

News and information

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Spintronics

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Research partnerships

Сalculations with Nanoscale Smart Particles August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE