Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Physicists to Develop New Way of Electronic Computing: UC Riverside’s Roland Kawakami leads a four-year $1.85 multicampus research project aimed at speeding up applications that process large amounts of data

The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.
The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.

Abstract:
The University of California, Riverside has received a $1.85 million grant to develop a new way of computing that is beyond the scope of conventional silicon electronics.

Physicists to Develop New Way of Electronic Computing: UC Riverside’s Roland Kawakami leads a four-year $1.85 multicampus research project aimed at speeding up applications that process large amounts of data

Riverside, CA | Posted on October 6th, 2011

The goal of the project is to speed up applications that process large amounts of data such as internet searching, data compression, and image recognition.

The money is awarded to UC Riverside under the nationwide "Nanoelectronics for 2020 and Beyond" competition sponsored by the National Science Foundation and the Nanoelectronics Research Initiative.

"Conventional silicon electronics will soon face its ultimate limits," said Roland Kawakami, a professor of physics and astronomy and the four-year grant's principal investigator. "Our approach is to utilize the spin degree of freedom to store and process information, which will allow the functions of logic and memory to be fully integrated into a single chip."

Spin is a fundamental characteristic property of electrons which causes them to behave as tiny magnets with a "north" and "south" pole. Electrons can occupy different spin states corresponding to different orientations for the magnetic poles. For spin-based computing, data is held in the spin state of the electron.

Kawakami explained that unlike more traditional approaches to improve electronics by building a better transistor, the current project has a far more transformative approach.

"We are looking at a completely new architecture or framework for computing," he said. "This involves developing a new type of ‘building-block' device known as a magnetologic gate that will serve as the engine for this technology - similar to the role of the transistor in conventional electronics. In addition, we will develop and design the circuits needed to utilize this device for specific functions, such as searching, sorting, and forecasting."

A magnetologic gate consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes.

The research project, which began Sept. 15, is a multicampus effort being led by UC Riverside. The research group of Jing Shi, a UCR professor of physics and astronomy, will work closely with Kawakami's research group on the project. They will be joined by Ilya Krivorotov at UC Irvine; Lu Sham at UC San Diego; Igor Zutic at SUNY Buffalo, NY; and Hanan Dery and Hui Wu at the University of Rochester, NY.

"Our team consists of experts in spintronics, magnetoresistive memory, theoretical physics, circuit design, and CMOS integration, a technology for constructing integrated circuits," said Kawakami, a member of UCR's Center for Nanoscale Science and Engineering.

The project is based on two major breakthroughs in nanoelectronics: The concept of spin-based computing using a magnetologic gate designed by Sham's group at UC San Diego in 2007; and the demonstration of tunneling spin injection and spin transport in graphene by Kawakami's group in 2010.

"Bringing these two results together, we find that graphene is the most promising material for developing magnetologic gates in terms of high speed, low energy usage, and operation at room temperature," Kawakami said.

Most of the experimental work will be done at UCR and UC Irvine. The circuit design and theory will be done at UC San Diego, the University of Rochester, and SUNY Buffalo.
The image shows a magnetologic gate, which consists of graphene contacted by several magnetic electrodes. Data is stored in the magnetic state of the electrodes, similar to the way data is stored in a magnetic hard drive. For the logic operations, electrons move through the graphene and use its spin state to compare the information held in the individual magnetic electrodes. Image credit: Kawakami lab, UC Riverside.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Iqbal Pittalwala
Tel: (951) 827-6050


Media Relations
900 University Avenue
1156 Hinderaker Hall
Riverside, CA 92521

Tel: (951) 827-6397 (951) UCR-NEWS
Fax: (951) 827-5008

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

More about Roland Kawakami

Department of Physics and Astronomy

Center for Nanoscale Science and Engineering

Related News Press

News and information

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Graphene/ Graphite

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Chip Technology

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Announcements

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Research partnerships

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project