Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology for Alzheimer’s disease detection and treatment

Abstract:
In this paper, we present the role of nanotechnology in the development and improvement of techniques for early diagnosis and effective treatment of Alzheimer's disease (AD). Since AD pathology is almost irreversible and present-day medications for AD only lower its associated symptoms, application of disease-modifying treatments could be successful only if AD early diagnosis is possible. The nanodiagnostic methods reported and compared in this paper include both of in vitro and in vivo nature. Of the in vitro approaches, the DNA-nanoparticle conjugates (bio-barcode assay), nanoparticle surface plasmon resonance, scanning tunneling microscopy, and two-photon Rayleigh spectroscopy are presented here. Of the in vivo methods, µMRI and optical imaging techniques are discussed here. The nanotreatment methods for AD are numerous. They are categorized in this report under neuroprotective methods from toxicity of amyloid-β peptide (Aβ) oligomers, oxidative stress of free radicals and nanocarriers for targeted drug delivery. The important agents for neuroprotection include nanogels, fullerene, nano-ceria, dendrimers, gold nanoparticles, and diamondoid derivatives. The major nanocarriers presented here include cholinesterase inhibitors nanocarriers, acetylcholine nanocarrier, metal chelator nanocarriers, (Iron chelators and copper chelators), curcuminoids nanocarrier, anti-oxidant nanocarriers, and gene nanocarriers. Considering that the AD is a multi-factorial disease with several pathogenetic mechanisms and pathways, a multifunctional nanotechnology approach will be needed to target its main molecular culprits. These molecular targets must include, but not limited to, Aβ oligomers, reactive oxygen species (ROS), excessive metal ions, tau phosphorylating kinases and cell cycle proteins.

Nanotechnology for Alzheimer’s disease detection and treatment

Switzerland | Posted on October 5th, 2011

Amir Nazem1, G.Ali Mansoori2 *

1 College of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
2 Department of BioEngineering, University of Illinois at Chicago, Chicago, IL 60607-7052, USA

* Author to whom correspondence should be addressed.

Published: October 04, 2011

####

For more information, please click here

Copyright © Insciences Journal

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Nanomedicine

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic