Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sulfur in hollow nanofibers overcomes challenges of lithium-ion battery design

A scanning electron microscope photo of hollow carbon nanofiber-encapsulated sulfur tubes, at the heart of a new battery design.
A scanning electron microscope photo of hollow carbon nanofiber-encapsulated sulfur tubes, at the heart of a new battery design.

Abstract:
Yi Cui and his students have used sulfur-coated hollow carbon nanofibers and an electrolyte additive to fabricate a superior rechargeable lithium battery cathode. According to Cui, putting silicon nanowire anodes and sulfur-coated carbon cathodes into one battery could be the next generation in battery design.

Sulfur in hollow nanofibers overcomes challenges of lithium-ion battery design

Stanford, CA | Posted on October 5th, 2011

Stanford researchers have used nanotechnology to invent a better lithium ion battery cathode.

The design of today's rechargeable lithium ion batteries limits the use of new technologies like electric cars and grid-scale energy storage because they do not store enough energy relative to their volume and weight - or, as researchers would say, their energy density is too low.

Solving that problem is largely a matter of finding new materials for the positively and negatively charged battery electrodes, the cathode and anode.

The research group of battery inventor Yi Cui, an associate professor of materials science and engineering, uses nanotechnology to fabricate electrode materials that greatly improve the electrical storage capacity of lithium ion batteries. In previous research, they reinvented battery anodes by fabricating them with silicon nanowires.

Now, Cui and his students have used sulfur-coated hollow carbon nanofibers and a special electrolyte additive to improve the other end of the rechargeable lithium ion battery, the cathode. The results were published online Sept. 14 in the journal Nano Letters.

According to Cui, putting silicon nanowire anodes and sulfur-coated carbon cathodes into one battery is the next generation of battery design.

"I strongly believe that's a promising future choice to make better batteries," Cui said.

"Sulfur is one of the materials that can offer a 10-times higher charge storage capacity but with about half the voltage of the existing battery," he said.

Both the charge capacity and the voltage affect how much energy a battery can deliver. With the sulfur cathode as part of a complete battery, the higher charge capacity makes it possible to build a battery with four to five times the energy storage compared to existing lithium ion battery technology.

Lithium-sulfur batteries have received attention because of the low cost and non-toxicity of sulfur. However, previous generations of lithium sulfur cathodes have not been viable for commercialization because they rapidly fail from repeated charging and recharging.

The new cathode fabrication resolves a number of material issues that, Cui said, "added together represent a really big challenge to get this material to work as a viable battery."

In previous lithium-sulfur cathode designs, sulfur coats onto relatively open carbon structures. This is a problem because it exposes sulfur to the battery's electrolyte solution. When intermediate reaction products called lithium polysulfides come into contact with the electrolyte solution, they reduce the battery's capacity by dissolving into the electrolyte.

As Cui's graduate student, Wesley Guangyuan Zheng, explained, "This can be conflicting because on the one side we don't want a large surface area contacting the sulfur and the electrolyte, and on the other hand we want a large surface area for electrical and ionic conductivities."

The new design solves the conflict with a unique fabrication process that allows sulfur to coat the inside of a hollow carbon nanofiber, but not the outside. This fabrication process relies on a novel use of a commercially available filter technology that is normally applied to water filtration.

The new cathode design also improves battery capacity because it has a nearly closed structure that prevents polysulfides from significantly leaking out into the electrolyte solution. The length of a hollow nanofiber is about 300 times its diameter; the long and narrow channels prevent polysulfides from leaking out.

In addition to the energy storage gains made with improved sulfur hollow carbon nanofiber fabrication, Cui's graduate student Yuan Yang included an electrolyte additive that enhances the battery's charge and energy efficiency, known as the coulombic efficiency.

"Without the additive you put 100 electrons into the battery and you get 85 out. With the additive, you get 99 out," Cui said.

"To design the best structure we need both the electrode design and the electrolyte additive and these two combined together can give you a high capacity and high coulombic efficiency," Cui said. "We now have high capacity on both sides of the electrode; that's exciting."

Judy J. Cha of the Stanford Department of Materials Science and Engineering and Seung Sae Hong of the Stanford Department of Applied Physics also contributed to this research.

Sarah Jane Keller is a science-writing intern at Stanford News Service.

####

For more information, please click here

Contacts:
Yi Cui
Materials Science and Engineering:
(650) 723-4613


Dan Stober
Stanford News Service:
(650) 721-6965

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Discoveries

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Iranian Scientists Produce Reusable Nanoadsorbent to Detect Sulfamide in Chicken July 27th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

Announcements

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE