Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Waste heat research leads the way for reduction of fossil fuels

PhD candidate Priyanka Jood is pictured with her supervisors Dr Germanas Peleckis and Professor Xiaolin Wang
close
PhD candidate Priyanka Jood is pictured with her supervisors Dr Germanas Peleckis and Professor Xiaolin Wang close

Abstract:
Thermoelectric power generation is expected to play an increasingly important role in meeting the energy challenges of the future.

And helping to meet that energy challenge is PhD student, Priyanka Jood, from the Institute for Superconducting and Electronic Materials (ISEM) whose groundbreaking research has just been published in the American Chemical Society journal, Nano Letters.

Waste heat research leads the way for reduction of fossil fuels

Wollongong, Australia | Posted on October 4th, 2011

Priyanka, the first author of the paper, supervised by Dr Germanas Peleckis and Professor Xiaolin Wang, is working on thermoelectric materials which can generate electricity directly from waste heat. Dr Peleckis, Professor Wang, and the Director of the ISEM, Professor Shi Dou, are co-authors of the Nano Letters paper.

The UOW team along with researchers from Rensselaer Polytechnic Institute (RPI) in New York have created large marble-size pellets of thermoelectric nanomaterials. Priyanka spent about a year working alongside the US team.

The RPI team are also co-authors in the paper. The team was led by Professor Ganpati Ramanath and the other team members who contributed were Rutvik J. Mehta, Yanliang Zhang, Richard W. Siegel and Theo Borca-Tasciuc.

Waste heat is sometimes referred to as secondary heat or low-grade heat which is heat produced by machines, electrical equipment and industrial processes. It is a byproduct of nearly all electrical devices and industrial processes from driving a car to flying an aircraft or operating a power plant.

Now the UOW team based at the Innovation Campus along with engineering researchers at Rensselaer Polytechnic Institute have developed new nanomaterials that could lead to techniques for better capturing and putting this waste heat to work.

The key ingredients for making marble-sized pellets of the new material are aluminium and a common everyday microwave oven.

Harvesting electricity from waste heat requires a material that is good at conducting electricity but poor at conducting heat. One of the most promising candidates for this job is zinc oxide (ZnO) -- a non-toxic, inexpensive material with a high melting point.

While nanoengineering techniques exist for boosting the electrical conductivity of zinc oxide, the material's high thermal conductivity is a roadblock to its effectiveness in collecting and converting waste heat. Because thermal and electrical conductivity are related properties, it's very difficult to decrease one without also diminishing the other.

Now the UOW and US-based teams have demonstrated a new way to decrease zinc oxide's thermal conductivity without reducing its electrical conductivity. The innovation involves adding minute amounts of aluminium to zinc oxide, and processing the materials in a microwave oven.

The research could lead to new technologies for harvesting waste heat and creating highly energy efficient cars, aircraft, power plants, and other systems.

Researchers say harvesting waste heat is a very attractive proposition, since the heat can be converted into electricity and used to power devices such as a car that is creating the heat in the first place. This would reduce the world's dependence on fossil fuels.

Priyanka said it was possible that even further power factor enhancements using nano-structured zinc oxide might be possible making this material highly valuable for thermoelectrical industrial applications.

She said that researchers at ISEM are continuing to explore new and novel methods for producing high performance thermoelectric materials as a part of their research program in energy storage and energy conversion materials.

####

For more information, please click here

Contacts:
University of Wollongong
Wollongong NSW 2522 Australia
UOW Switchboard: +61 2 4221 3555
Fax: +61 (02) 4221 3128

Copyright © University of Wollongong

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Results of the Australian Research Council funded study entitled “Al-Doped Zinc Oxide Nanocomposites with Enhanced Thermoelectric Properties,” can be seen online at Nano Letters at this site:

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Discoveries

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

The first demonstration of a self-powered cardiac pacemaker June 23rd, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE