Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > SLAC, Stanford Materials Scientists Develop Topological Insulator With a Switch

In a topological insulator, electrons travel unimpeded along the edges of the sample, regardless of where they enter or leave it. They travel in a direction perpendicular to the direction of their spin. In this diagram based on a sample of mercury telluride, red arrows correspond to electrons with "spin up," blue, "spin down." An electron injected into one leg of the "H" can end up in the other without bumping into other electrons or defects in the bulk of the material, and hence without any resistance.(Image courtesy Shoucheng Zhang)
In a topological insulator, electrons travel unimpeded along the edges of the sample, regardless of where they enter or leave it. They travel in a direction perpendicular to the direction of their spin. In this diagram based on a sample of mercury telluride, red arrows correspond to electrons with "spin up," blue, "spin down." An electron injected into one leg of the "H" can end up in the other without bumping into other electrons or defects in the bulk of the material, and hence without any resistance.

(Image courtesy Shoucheng Zhang)

Abstract:
Scientists at Stanford and SLAC have found a potential way to harness the amazing properties of topological insulators - materials that conduct electricity only along their surfaces - for use in electronics and other applications.

SLAC, Stanford Materials Scientists Develop Topological Insulator With a Switch

Palo Alto, CA | Posted on October 4th, 2011

A paper published online this week in Nature Nanotechnology describes how they combined two previously known topological insulators to create a new one that carries only surface currents. They then crafted this material into extremely thin, tiny plates and showed that they could control the electronic properties of these nanoplates using a gate - essentially, a transistor that opens and shuts to switch the material from one state to another.

"Gating is very important for electronic devices," said co-author Yi Cui, an associate professor on the faculty of Stanford and SLAC, and controlling the properties of these novel materials "is really the foundation for making future electronic devices for information processing."

The research combined the efforts of physicists and materials scientists at SIMES, the Stanford Institute for Materials and Energy Sciences, which is a joint institute of SLAC National Accelerator Laboratory and Stanford University.

A group working with Stanford Associate Prof. Ian Fisher prepared crystals of the new compound, which contains three elements - bismuth, antimony and tellurium. Another group, under the direction of SLAC Chief Scientist Zhi-Xun Shen, tested various combinations of the three elements to see which one had the best electronic properties, using instruments at the Advanced Light Source at Lawrence Berkeley National Laboratory.

They looked for the combination that allowed the highest current to flow on the surface of the material and the least amount of current to flow through the interior, which is known as the bulk material. This interior flow interferes with a topological insulator's desirable qualities.

Finally, Cui's group formed the compound into six-sided nanoplates whose properties could be controlled by switching a separate electrical current on and off; that's the gating part. Flipping the switch one way caused the compound to behave as an n-type material - one in which electricity is conducted by negatively-charged electrons. Flipping the switch the other way turned the compound into a p-type material, in which positively charged "holes" carried the current. Today's electronic chips contain both p- and n-type materials.

This study is among the first to clearly demonstrate that it's possible to use a gate to toggle the whole piece of topological insulator material between these two states.

"That's actually very important for any kind of electronic materials," said Desheng Kong, a fourth-year graduate student in Cui's lab, who is first author of the report. "You want not only to understand them, but to control their properties."

The fact that the material's properties can be tuned by applying a gate current also means that you don't need to start with a perfect material to achieve good performance, added SLAC staff scientist Yulin Chen, the report's second author. "That's neat," he said. "And of course, in the long run, people will keep making the materials better and better."

Novel devices are desperately needed because the usefulness of today's semiconductor technology is coming to an end, said SIMES Prof. Shoucheng Zhang, who was not involved in this study.

He said one of the biggest obstacles to the continuation of Moore's Law - the idea that the number of transistors that can be squeezed onto an integrated circuit will double every 18 months - is that the electrons moving inside today's chips dissipate too much heat. "You actually feel that when you put your laptop on your lap," he said. "It's not just annoying, but a chip does not function anymore, at a certain speed," when it gets too hot.

"This has become such a fundamental problem that many people think the only way to solve it is to change the fundamental architecture and operating principle of the chip," Zhang said, "and that's a playground for physicists."

The potential advantage of using topological insulators to carry currents in chips is that electrons traveling along the thin surface of the material do so with great efficiency and generate very little heat. It's not just the thinness of the surface that plays a role; it's the fact that these electrons exhibit something called the "quantum spin Hall effect," one of the spooky realizations of quantum mechanics. Unlike electrons in conventional materials, each electron in a topological insulator travels in a direction perpendicular to its spin.

The net effect is that the electrons flow smoothly in the same direction with no resistance, calmly swerving around obstacles - such as accidental contaminants or defects in the material - rather than colliding and veering off in all directions. As Zhang explains it, it's the difference between a Ferrari speeding through a crowded marketplace and the same car cruising down a highway.

The excitement surrounding topological insulators is not confined to their potential usefulness in electronic devices. They could also give scientists insight into a wide variety of exotic phenomena, including hypothetical particles called axions, which could help to explain dark matter, and magnetic monopoles.

It was Zhang who, in 2006, helped set off a mad dash to investigate topological insulators by predicting that an alloy of mercury and tellurium would behave as one. Within a year, a group in Germany made this compound and showed that it did indeed work, but only at very low temperatures. In 2009, Chen, Shen, Fisher and their colleagues proved that bismuth telluride - a cheaper, more abundant and easier-to-handle material - is a topological insulator at room temperature, and the field really took off.

The latest result is "a significant step," Zhang said, in the worldwide effort by many groups of scientists to harness the properties of these novel materials.

####

For more information, please click here

Contacts:
SLAC Office of Communications
Director of Communications:
Farnaz Khadem
(650) 926-8707

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Kavli Lectures: Innovation by evolution and harnessing the quantum mechanics of the hydrogen bond August 15th, 2019

Laboratories

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

Chip Technology

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Toppan Photomasks and GLOBALFOUNDRIES Enter into Multi-Year Supply Agreement August 15th, 2019

Sharp meets flat in tunable 2D material: Rice's new atom-flat compounds show promise for optoelectronics, advanced computing August 12th, 2019

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Discoveries

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Probing the Origin of Alzheimer’s . . . with Transistors: Novel high-sensitivity detector could aid in early diagnosis August 15th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Announcements

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Tools

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Cellulose nanofibers to improve the sensitivity of lateral flow tests August 7th, 2019

How to trick electrons to see the hidden face of crystals: Researchers try a trick for complete 3D analysis of submicron crystals August 3rd, 2019

Nanoscribe expands its worldwide presence: Specialist for 3D nano and micro fabrication opens US subsidiary for service and sales July 31st, 2019

Research partnerships

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

Nanoparticles’ movement reveals whether they can successfully target cancer: Targeting nanoparticles rotate faster and move across larger areas August 9th, 2019

Researchers embrace imperfection to improve biomolecule transport August 8th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project