Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Rice physicists move one step closer to quantum computer: 'Electron superhighway' could pave way for creation of elusive quantum-particle pairs

 This semiconductor chip contains hundreds of tiny "electron superhighways," submicroscopic devices that could one day be useful for building quantum computers.
This semiconductor chip contains hundreds of tiny "electron superhighways," submicroscopic devices that could one day be useful for building quantum computers.

Abstract:
Rice University physicists have created a tiny "electron superhighway" that could one day be useful for building a quantum computer, a new type of computer that will use quantum particles in place of the digital transistors found in today's microchips.

Rice physicists move one step closer to quantum computer: 'Electron superhighway' could pave way for creation of elusive quantum-particle pairs

Houston, TX | Posted on October 4th, 2011

In a recent paper in Physical Review Letters, Rice physicists Rui-Rui Du and Ivan Knez describe a new method for making a tiny device called a "quantum spin Hall topological insulator." The device, which acts as an electron superhighway, is one of the building blocks needed to create quantum particles that store and manipulate data.

Today's computers use binary bits of data that are either ones or zeros. Quantum computers would use quantum bits, or "qubits," which can be both ones and zeros at the same time, thanks to the quirks of quantum mechanics.

This quirk gives quantum computers a huge edge in performing particular types of calculations, said Du, professor of physics and astronomy at Rice. For example, intense computing tasks like code-breaking, climate modeling and biomedical simulation could be completed thousands of times faster with quantum computers.

"In principle, we don't need many qubits to create a powerful computer," he said. "In terms of information density, a silicon microprocessor with 1 billion transistors would be roughly equal to a quantum processor with 30 qubits."

In the race to build quantum computers, researchers are taking a number of approaches to creating qubits. Regardless of the approach, a common problem is making certain that information encoded into qubits isn't lost over time due to quantum fluctuations. This is known as "fault tolerance."

The approach Du and Knez are following is called "topological quantum computing." Topological designs are expected to be more fault-tolerant than other types of quantum computers because each qubit in a topological quantum computer will be made from a pair of quantum particles that have a virtually immutable shared identity. The catch to the topological approach is that physicists have yet to create or observe one of these stable pairs of particles, which are called "Majorana fermions" (pronounced MAH-yor-ah-na FUR-mee-ons).

The elusive Majorana fermions were first proposed in 1937, although the race to create them in a chip has just begun. In particular, physicists believe the particles can be made by marrying a two-dimensional topological insulator -- like the one created by Du and Knez -- to a superconductor.

Topological insulators are oddities; although electricity cannot flow through them, it can flow around their narrow outer edges. If a small square of a topological insulator is attached to a superconductor, Knez said, the elusive Majorana fermions are expected to appear precisely where the materials meet. If this proves true, the devices could potentially be used to generate qubits for quantum computing, he said.

Knez spent more than a year refining the techniques to create Rice's topological insulator. The device is made from a commercial-grade semiconductor that's commonly used in making night-vision goggles. Du said it is the first 2-D topological insulator made from a material that physicists already know how to attach to a superconductor.

"We are well-positioned for the next step," Du said. "Meanwhile, only experiments can tell whether we can find Majorana fermions and whether they are good candidates for creating stable qubits."

The research was funded by the National Science Foundation, Rice University, the Hackerman Advanced Research Program, the Welch Foundation and the Keck Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A copy of the PRL paper is available at:

Related News Press

News and information

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Govt.-Legislation/Regulation/Funding/Policy

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-APOC3 June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Quantum Computing

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Discoveries

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project