Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanomaterials: Pillars of the assembly - Advanced electronics beckon thanks to self-assembling templates that allow the creation of nanoscale features on silicon wafers

Fine arrays of nanopillars can be patterned onto a silicon surface using a self-assembling polymer template
Copyright : A*STAR
Fine arrays of nanopillars can be patterned onto a silicon surface using a self-assembling polymer template

Copyright : A*STAR

Abstract:
The ever-increasing demand for enhanced performance in electronic devices such as solar cells, sensors and batteries is matched by a need to find ways to make smaller electrical components. Several techniques have been proposed for creating tiny, nanoscale structures on silicon, but these types of ‘nanopatterning' tend to involve low-throughput, high-cost approaches not suited to large-scale production. Sivashankar Krishnamoorthy and co-workers at the A*STAR Institute of Materials Research and Engineering have now found a simple and robust method for nanopatterning the entire surface of a silicon wafer.

Nanomaterials: Pillars of the assembly - Advanced electronics beckon thanks to self-assembling templates that allow the creation of nanoscale features on silicon wafers

Singapore | Posted on October 1st, 2011

Krishnamoorthy's technique exploits the self-assembling properties of polymeric nanoparticles, known as reverse micelles. These unconventional particles have a structure consisting of a polar core and an outer layer of non-polar ‘arms'. Reverse micelles can form highly ordered arrays on the surface of a silicon wafer. The resulting ‘coating' can be used as a lithographic resist to mask the silicon surface during the etching process.

Although other groups have developed similar approaches in previous studies, Krishnamoorthy and co-workers are the first to develop a process that can pattern the entire surface of a silicon wafer with highly uniform nanostructures (see image). The authors have further developed a method to quantify nanostructure variations across large areas using simple optical tools, paving the way for high-throughput nanometrology.

In an additional improvement to the process, the researchers exposed the self-assembled polymer layer to a titanium chloride vapour. The titanium chloride selectively accumulates within each micelle's polar core. A blast of oxygen plasma then strips away the polymer to leave a pattern of tiny titanium oxide dots. This process converts a soft organic template into a hard inorganic mask much more suited to etching ultra-fine features into the silicon, producing arrays of nanopillars less than 10 nanometers apart.

The findings are expected to be highly adaptable. "Although we have demonstrated the process for creating silicon nanopillars, it is very versatile and can be readily extended to achieve nanopatterns of most other materials, for example, metals, semiconductors and polymers through appropriate post-processing of the initial copolymer templates," explains Krishnamoorthy. "Other patterns besides nanopillars could also be created, depending on the pattern-transfer processing employed."

Krishnamoorthy and his team are already exploring the potential applications of their technique. "We are currently making use of this process to create nanodevices for sensing, data storage, and energy applications, such as batteries and solar cells," Krishnamoorthy says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

References

Krishnamoorthy, S., Manipaddy, K. K., and Yap, F. L. Wafer-level self-organized copolymer templates for nanolithography with sub-50 nm feature and spatial resolutions. Advanced Functional Materials 21, 1102-1112 (2011).

####

For more information, please click here

Copyright © A*STAR Institute of Microelectronics (IME)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to article on A*STAR research:

Link to research paper “Wafer-Level Self-Organized Copolymer Templates for Nanolithography with Sub-50 nm Feature and Spatial Resolutions”:

Institute of Materials Research and Engineering:

A*STAR

Related News Press

News and information

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Chip Technology

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Self Assembly

Nanocages for gold particles: what is happening inside? March 16th, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Nanoelectronics

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Announcements

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project