Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > A Small Revolution: In fewer than 15 years, nanomedicine has gone from fantasy to reality.

October 1st, 2011

A Small Revolution: In fewer than 15 years, nanomedicine has gone from fantasy to reality.

Abstract:
Many trace the origins of nanomedicine to a talk Richard Feynman gave at Caltech in 1959—There's Plenty of Room at the Bottom. During the lecture, Feynman proposed the idea of chemical manipulation at the atomic level and suggested that patients might one day "swallow the surgeon" in the form of tiny machines. Some 50 years later, researchers are still working to realize these dreams, but Feynman would no doubt be impressed by the list of nanomedicine applications being developed today. Nanomaterials have made their way into drug-delivery systems and diagnostics, and are quickly becoming essential basic research tools.

Of course, the reality of nanomedicine doesn't exactly fit Feynman's fantasies. The silicon chip boom of the 1980s gave chemists the technology they needed to manipulate substances at the nanoscale. But chemists weren't necessarily thinking about biomedical applications when they first started working with nanomaterials. "People were playing around with matter partly because they could," says Paul Alivisatos, a chemist at the University of California, Berkeley, and a pioneer in nanotechnology. One of the most famous discoveries of this exploratory period was the buckyball, a carbon nanoparticle with a unique geodesic-like structure that earned its discoverers the 1996 Nobel Prize in chemistry, even though it wasn't obvious at the time that there would be any real-world applications for so-called fullerenes. "I think it was a real evolution in the field when it became more clear that there could be a lot of impact in medicine," says Alivisatos. "Applications emerged in areas people hadn't anticipated." Today fullerenes are being developed as drug carriers and for other nanomedicine applications.

Source:
the-scientist.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

INVECAS to Enable ASIC Designs for Tomorrow’s Intelligent Systems on GLOBALFOUNDRIES' FDX™ Technology: INVECAS to Collaborate with GLOBALFOUNDRIES to Provide IP and End-to-End ASIC Design Services on 22FDX® and 12FDX™ Technologies September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Nanomedicine

Harris & Harris Group Notes Announcements by Its Portfolio Companies During the Third Quarter of 2016 September 30th, 2016

How to power up graphene implants without frying cells: New analysis finds way to safely conduct heat from graphene to biological tissues September 30th, 2016

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic