Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Etch Process Developed at the CNST uses Argon Pulsing to Improve Silicon Etch Rate and Selectivity

Abstract:
Engineers in the CNST NanoFab have developed a new plasma etching technique for silicon which improves the etch rate, the mask selectivity, and the sidewall profile by optimizing the addition of argon to the process flow.

New Etch Process Developed at the CNST uses Argon Pulsing to Improve Silicon Etch Rate and Selectivity

Gaithersburg, MD | Posted on September 30th, 2011

Small and high aspect ratio silicon structures can now be easily and more rapidly fabricated in the NanoFab using fluorinated plasma chemistry that is inherently isotropic. Directly adding argon to a typical SF6/C4F8 plasma primarily causes dilution and reduces the etch rate. By alternating the etch step with an argon-only step, both high selectivity and high etch rates were obtained while maintaining anisotropic etching. In a deep silicon etch, C4F8 is used to protect the Si sidewalls and SF6 is used to etch. Mixing argon with the etchant gases provides very limited or no improvement to the etch rate due to dilution. However, alternating argon surface bombardment steps with the chemical etch steps results in a four-fold increase in the silicon etch rate while maintaining vertical sidewalls. The silicon etch rate increases with the argon step time, independent of the SF6 step time, and the argon bombardment step is rate-determining. It influences the etch rate, as well as the selectivity and etching profile. The engineers postulate that argon surface bombardment renders the top atomic layers of the silicon amorphous, and then gas phase fluorine can react with and remove the silicon. With the long etch times associated with deep silicon trench etching, this faster process is likely to become widely used.

Effect of alternating Ar and SF6/C4F8 gas flow in Si nano-structure plasma etching, L. Chen, V. Luciani, and H. Miao, Microelectronic Engineering 88, 2470-2473 (2011).

####

For more information, please click here

Contacts:
Lei Chen
301-975-2908

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Printing/Lithography/Inkjet

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Printed Electronics Europe - Plastic Logic shows a flexible OLED display for wearable devices April 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE