Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > SiMPore Awarded Phase I SBIR From NIH To Improve TEM Imaging Technology For Biomedical Researchers

Abstract:
SiMPore Inc., an early-stage nanotechnology company in Rochester, NY, has received a Phase I SBIR grant from the National Institutes of Health to improve phase contrast transmission electron microscopy (TEM). An electron microscope uses a beam of electrons instead of light to illuminate an object of interest. It allows the object to be observed at one-million-times magnification or greater. In theory, this level of magnification should permit biomedical researchers to see the three-dimensional structure of a virus or similarly sized biological molecule. However, current TEM methods are limited in certain aspects. Phase contrast promises to overcome some of these inherent limitations of TEM imaging of biological structures.

SiMPore Awarded Phase I SBIR From NIH To Improve TEM Imaging Technology For Biomedical Researchers

Rochester, NY | Posted on September 29th, 2011

The technology that SiMPore develops will increase the practicality of phase-contrast TEM to image biological molecules. By fabricating next generation phase plates, a core component of phase-contrast TEM, SiMPore hopes to increase the practical accessibility of this method. SiMPore will apply its expertise in the fabrication of thin-films to create a new class of highly manufacturable phase plates.

The grant application elicited both high scores and favorable compliments from NIH reviewers. The reviewers unanimously acknowledged that the proposed work addresses an unmet need, is highly innovative and greatly significant. They also recognized that the proposal could have a high-degree of immediate impact on the field of electron microscopy.

Dr. Christopher Striemer, Vice-President of Membrane Development at SiMPore, said, "We believe several key factors contributed to the success of our application. Our expertise in thin-film micro-fabrication, combined with the electron microscopy expertise of our collaborator, and a clear market need for these components, provided a strong basis for our proposal. Our case was very compelling."

SiMPore will collaborate with the New York State Department of Health's Wadsworth Center, which will test the phase plates SiMPore develops. Mr. Michael Marko of the Wadsworth Center, a recognized expert in the use of phase plates, will direct the evaluation of SiMPore's prototypes. Mr. Marko has developed several first-in-class innovations in phase-contrast electron microscopy.

####

About SiMPore Inc.
SiMPore is commercializing a novel membrane technology enabling new discoveries while also reducing the time and cost of everyday development processes in the life sciences. SiMPore is a Rochester, New York-based nanotechnology company that designs and produces membranes and membrane-enabled products based on its unique patent-pending platform technology - the UltraSMŽ ultrathin nanoporous silicon membrane. The UltraSMŽ membrane is the world's first membrane to offer both tunable nanometer-scale thickness and pore size. SiMPore is developing products that take advantage of these one-of-a-kind features, including filters for separating and concentrating biological molecules and nanoparticles, cell culture substrates for growing cells, and electron microscopy grids for preparing and imaging samples at the nanoscale.

About TEMwindows.com

TEMwindows.com, a division of SiMPore Inc., is the online source of innovative sample preparation solutions for the imaging and analysis of nanoscale materials. TEMwindows.com features state-of-the-art transmission electron microscopy windows that enable researchers to characterize their cutting-edge nanomaterials. By incorporating the latest MEMS and thin film technologies, TEMwindows.com provides researchers with the resources to advance their research and development programs. TEMwindows.com is fully integrated with, and supported by, the technical expertise at SiMPore.

UltraSM is a registered trademark of SiMPore Inc.

For more information, please click here

Contacts:
Dr. Christopher Striemer
Vice-President
Membrane Development

Copyright © SiMPore Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Imaging

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Govt.-Legislation/Regulation/Funding/Policy

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Tools

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project