Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SiMPore Awarded Phase I SBIR From NIH To Improve TEM Imaging Technology For Biomedical Researchers

Abstract:
SiMPore Inc., an early-stage nanotechnology company in Rochester, NY, has received a Phase I SBIR grant from the National Institutes of Health to improve phase contrast transmission electron microscopy (TEM). An electron microscope uses a beam of electrons instead of light to illuminate an object of interest. It allows the object to be observed at one-million-times magnification or greater. In theory, this level of magnification should permit biomedical researchers to see the three-dimensional structure of a virus or similarly sized biological molecule. However, current TEM methods are limited in certain aspects. Phase contrast promises to overcome some of these inherent limitations of TEM imaging of biological structures.

SiMPore Awarded Phase I SBIR From NIH To Improve TEM Imaging Technology For Biomedical Researchers

Rochester, NY | Posted on September 29th, 2011

The technology that SiMPore develops will increase the practicality of phase-contrast TEM to image biological molecules. By fabricating next generation phase plates, a core component of phase-contrast TEM, SiMPore hopes to increase the practical accessibility of this method. SiMPore will apply its expertise in the fabrication of thin-films to create a new class of highly manufacturable phase plates.

The grant application elicited both high scores and favorable compliments from NIH reviewers. The reviewers unanimously acknowledged that the proposed work addresses an unmet need, is highly innovative and greatly significant. They also recognized that the proposal could have a high-degree of immediate impact on the field of electron microscopy.

Dr. Christopher Striemer, Vice-President of Membrane Development at SiMPore, said, "We believe several key factors contributed to the success of our application. Our expertise in thin-film micro-fabrication, combined with the electron microscopy expertise of our collaborator, and a clear market need for these components, provided a strong basis for our proposal. Our case was very compelling."

SiMPore will collaborate with the New York State Department of Health's Wadsworth Center, which will test the phase plates SiMPore develops. Mr. Michael Marko of the Wadsworth Center, a recognized expert in the use of phase plates, will direct the evaluation of SiMPore's prototypes. Mr. Marko has developed several first-in-class innovations in phase-contrast electron microscopy.

####

About SiMPore Inc.
SiMPore is commercializing a novel membrane technology enabling new discoveries while also reducing the time and cost of everyday development processes in the life sciences. SiMPore is a Rochester, New York-based nanotechnology company that designs and produces membranes and membrane-enabled products based on its unique patent-pending platform technology - the UltraSM® ultrathin nanoporous silicon membrane. The UltraSM® membrane is the world's first membrane to offer both tunable nanometer-scale thickness and pore size. SiMPore is developing products that take advantage of these one-of-a-kind features, including filters for separating and concentrating biological molecules and nanoparticles, cell culture substrates for growing cells, and electron microscopy grids for preparing and imaging samples at the nanoscale.

About TEMwindows.com

TEMwindows.com, a division of SiMPore Inc., is the online source of innovative sample preparation solutions for the imaging and analysis of nanoscale materials. TEMwindows.com features state-of-the-art transmission electron microscopy windows that enable researchers to characterize their cutting-edge nanomaterials. By incorporating the latest MEMS and thin film technologies, TEMwindows.com provides researchers with the resources to advance their research and development programs. TEMwindows.com is fully integrated with, and supported by, the technical expertise at SiMPore.

UltraSM is a registered trademark of SiMPore Inc.

For more information, please click here

Contacts:
Dr. Christopher Striemer
Vice-President
Membrane Development

Copyright © SiMPore Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project