Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A Material for All Weathers (with Zero Thermal Expansion)

Abstract:
Specialized materials that do not change their volume with alteration of temperature may now be easier to produce, thanks to work by a multinational team of scientists into the mechanism of such behavior in antiperovskite manganese nitrides.

A Material for All Weathers (with Zero Thermal Expansion)

Germany | Posted on September 29th, 2011

Every child learns in school that materials expand or contract with changes in temperature. There are only a few special materials that barely or do not alter their volume in response to temperature, and this normally only occurs over a relatively narrow temperature window. This property is called zero thermal expansion. But such materials are in great demand for both precision engineering of sensitive bulk systems and as components for nanodevices. For example, the gyroscopes used in spacecraft must maintain the same functionality independent of the temperature at which they operate.

The most common way to control thermal expansion is by combining materials with different thermal expansion behavior, however, this method leads to local stresses and strains that often enhance material fatigue and thus shorten component lifetime. Zero thermal expansion in a single, uncombined material is only known in a few cases, one of which is a class of materials called antiperovskite manganese nitrides.

Now, Xiaoyan Song at Beijing University of Technology, China, and co-workers from as far afield as NIST in Gaithersburg, USA, University of Jena in Germany, the Chinese Academy of Sciences, and the National Institute for Materials Science in Tsukuba, Japan, have worked together on these antiperovskite manganese nitrides to discover how the effect occurs and thus to extend it beyond the normal temperature ranges for these materials.

The scientists found that the thermal expansion behavior of the antiperovskite manganese nitrides can be controlled by altering the lattice site occupancy of the manganese within the solid-state structure, i.e., each compound has a fixed number of available sites that can be occupied by manganese and some of these sites may be left unoccupied while the whole structure is still retained. Such alteration affects the magnetic ordering in the material which in turn influences the behavior of the material with respect to temperature.

The scientists achieved a much larger than usual range of temperatures over which zero thermal expansion occurs in antiperovskite manganese nitrides; three to four times greater than previously reported.

Professor Song believes that their mechanism for altering the zero thermal expansion behavior is a universal one that could be applied to other types of material also. This result should enable materials scientists to provide engineers and nanoscientists with new and varied building blocks for the most critical of applications.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

X. Song et al., Adv. Mater., 2011 ; DOI: 10.1002/adma.201102552

Related News Press

News and information

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic