Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A Material for All Weathers (with Zero Thermal Expansion)

Abstract:
Specialized materials that do not change their volume with alteration of temperature may now be easier to produce, thanks to work by a multinational team of scientists into the mechanism of such behavior in antiperovskite manganese nitrides.

A Material for All Weathers (with Zero Thermal Expansion)

Germany | Posted on September 29th, 2011

Every child learns in school that materials expand or contract with changes in temperature. There are only a few special materials that barely or do not alter their volume in response to temperature, and this normally only occurs over a relatively narrow temperature window. This property is called zero thermal expansion. But such materials are in great demand for both precision engineering of sensitive bulk systems and as components for nanodevices. For example, the gyroscopes used in spacecraft must maintain the same functionality independent of the temperature at which they operate.

The most common way to control thermal expansion is by combining materials with different thermal expansion behavior, however, this method leads to local stresses and strains that often enhance material fatigue and thus shorten component lifetime. Zero thermal expansion in a single, uncombined material is only known in a few cases, one of which is a class of materials called antiperovskite manganese nitrides.

Now, Xiaoyan Song at Beijing University of Technology, China, and co-workers from as far afield as NIST in Gaithersburg, USA, University of Jena in Germany, the Chinese Academy of Sciences, and the National Institute for Materials Science in Tsukuba, Japan, have worked together on these antiperovskite manganese nitrides to discover how the effect occurs and thus to extend it beyond the normal temperature ranges for these materials.

The scientists found that the thermal expansion behavior of the antiperovskite manganese nitrides can be controlled by altering the lattice site occupancy of the manganese within the solid-state structure, i.e., each compound has a fixed number of available sites that can be occupied by manganese and some of these sites may be left unoccupied while the whole structure is still retained. Such alteration affects the magnetic ordering in the material which in turn influences the behavior of the material with respect to temperature.

The scientists achieved a much larger than usual range of temperatures over which zero thermal expansion occurs in antiperovskite manganese nitrides; three to four times greater than previously reported.

Professor Song believes that their mechanism for altering the zero thermal expansion behavior is a universal one that could be applied to other types of material also. This result should enable materials scientists to provide engineers and nanoscientists with new and varied building blocks for the most critical of applications.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

X. Song et al., Adv. Mater., 2011 ; DOI: 10.1002/adma.201102552

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Research partnerships

Basque researchers turn light upside down February 23rd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project