Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene walls could make powerful electronics: Rice, Hong Kong Polytechnic physicists calculate 100 trillion could fit on a chip

Researchers at Rice University and Hong Kong Polytechnic University calculated that graphene nanoribbons could stand up on diamond or nickel, or even form arches. Up to 100 trillion graphene walls could fit on a square centimeter chip. (Credit: Feng Ding/Hong Kong Polytechnic University)
Researchers at Rice University and Hong Kong Polytechnic University calculated that graphene nanoribbons could stand up on diamond or nickel, or even form arches. Up to 100 trillion graphene walls could fit on a square centimeter chip.

(Credit: Feng Ding/Hong Kong Polytechnic University)

Abstract:
To stand a ribbon of graphene upright, it needs diamond on the soles of its shoes.

A new paper by collaborators at Rice University and Hong Kong Polytechnic University demonstrates the possibility that tiny strips of graphene -- one-atom-thick sheets of carbon -- can stand tall on a substrate with a little support. This leads to the possibility that arrays of graphene walls could become ultrahigh density components of electronic or spintronic devices.

Graphene walls could make powerful electronics: Rice, Hong Kong Polytechnic physicists calculate 100 trillion could fit on a chip

Houston, TX | Posted on September 28th, 2011

The work was published this month in the online edition of the Journal of the American Chemical Society.

Calculations by Rice theoretical physicist Boris Yakobson, Assistant Professor Feng Ding of Hong Kong Polytechnic and their collaborators showed substrates not only of diamond but also nickel could chemically bind the edge of a strip of a graphene nanoribbon. Because the contact is so slight, the graphene walls retain nearly all of their inherent electrical or magnetic properties.

And because they're so thin, Yakobson and Ding calculated a theoretical potential of putting 100 trillion graphene wall field-effect transistors (FETs) on a square-centimeter chip.

That potential alone may make it possible to blow past the limits implied by Moore's Law -- something Yakobson once discussed with Intel founder Gordon Moore himself.

"We met in Montreal, when nano was a new kid on the block, and had a good conversation," said Yakobson, Rice's Karl F. Hasselmann Chair in Engineering and a professor of materials science and mechanical engineering and of chemistry. "Moore liked to talk about silicon wafers in terms of real estate. Following his metaphor, an upright architecture would increase the density of circuits on a chip -- like going from ranch-style houses in Texas to skyscraper condos in Hong Kong.

"This kind of strategy may help sustain Moore's Law for an extra decade," he said.

A sheet of material a fraction of a nanometer wide is pretty pliable, he said, but the laws of physics are on its side. Binding energies between carbon in the diamond matrix and carbon in graphene are maximized at the edge, and the molecules bind strongly at a 90-degree angle. Minimal energy is required for the graphene to stand upright, which is its preferred state. (Walls on a nickel substrate would be angled at about 30 degrees, the researchers found.)

Yakobson said the walls could be as close to each other as 7/10ths of a nanometer, which would maintain the independent electronic properties of individual nanoribbons. They could potentially be grown on silicon, silicon dioxide, aluminum oxide or silicon carbide.

The research illustrated differences between walls made of two distinct types of graphene, zigzag and armchair, so-called because of the way their edges are shaped.

Sheets of graphene are considered semimetals that have limited use in electronics because electrical current shoots straight through without resistance. However, armchair nanoribbons can become semiconductors; the thinner the ribbon, the larger the band gap, which is essential for transistors.

Zigzag nanoribbons are magnetic. Electrons at their opposing edges spin in opposite directions, a characteristic that can be controlled by an electric current; this makes them suitable for spintronic devices.

In both cases, the electronic properties of the walls can be tuned by changing their height.

The researchers also suggested nanowalls could become nanoarches by attaching opposing ends of a graphene ribbon to the substrate. Rather than lie flat on the diamond or nickel surface, the energies at play along the binding edges would naturally force the graphene strip to rise in the middle. It would essentially become a half-nanotube with its own set of potentially useful properties.

Precisely how to turn these two-dimensional building blocks into a three-dimensional device presents challenges, but the payoff is great, Yakobson said. He noted that the research lays the groundwork for subnanometer electronic technology.

Co-authors of the paper are Qinghong Yuan, Hong Hu and Junfeng Gao of the Institute of Textiles and Clothing, Hong Kong Polytechnic University, and Zhifeng Liu of the Chinese University of Hong Kong. Ding was a research scientist in Yakobson's Rice lab from 2005 to 2009 and has a complimentary appointment at Rice.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its žunconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

View short videos illustrating graphene walls at the American Chemical Society site:

Related News Press

News and information

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Graphene/ Graphite

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Videos/Movies

WiFi capacity doubled at less than half the size: Columbia Engineers develop the first on-chip RF circulator that doubles WiFi speeds with a single antenna -- could transform telecommunications April 18th, 2016

First-ever videos show how heat moves through materials at the nanoscale and speed of sound: Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy April 16th, 2016

Nanotubes assemble! Rice introduces 'Teslaphoresis' Reconfigured Tesla coil aligns, electrifies materials from a distance April 15th, 2016

Record-breaking steel could be used for body armor, shields for satellites April 7th, 2016

Chip Technology

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Discoveries

Superfast light source made from artificial atom April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Danish researchers behind vaccine breakthrough April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Announcements

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Superfast light source made from artificial atom April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

Research partnerships

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

XEI Scientific and the University of Southern California collaborate on the use of downstream plasma cleaning in sample preparation and publish a paper in ACS Photonics April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic