Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use carbon nanotubes to make solar cells affordable, flexible

Abstract:
Researchers from Northwestern University have developed a carbon-based material that could revolutionize the way solar power is harvested. The new solar cell material - a transparent conductor made of carbon nanotubes - provides an alternative to current technology, which is mechanically brittle and reliant on a relatively rare mineral.

Researchers use carbon nanotubes to make solar cells affordable, flexible

Chicago, IL | Posted on September 28th, 2011

Due to the earth abundance of carbon, carbon nanotubes have the potential to boost the long-term viability of solar power by providing a cost-efficient option as demand for the technology increases. In addition, the material's mechanical flexibility could allow solar cells to be integrated into fabrics and clothing, enabling portable energy supplies that could impact everything from personal electronics to military operations.

The research, headed by Mark C. Hersam, professor of materials science and engineering and professor of chemistry, and Tobin J. Marks, Vladimir N. Ipatieff Professor of Catalytic Chemistry and professor of materials science and engineering, is featured on the cover of the October 2011 issue of Advanced Energy Materials, a new journal that specializes in science about materials used in energy applications.

Solar cells are comprised of several layers, including a transparent conductor layer that allows light to pass into the cell and electricity to pass out; for both these actions to occur, the conductor must be both electrically conductive and also optically transparent. Few materials concurrently possess both of these properties.

Currently, indium tin oxide is the dominant material used in transparent conductor applications, but the material has two potential limitations. Indium tin oxide is mechanically brittle, which precludes its use in applications that require mechanical flexibility. In addition, Indium tin oxide relies on the relatively rare element indium, so the projected increased demand for solar cells could push the price of indium to problematically high levels.

"If solar technology really becomes widespread, as everyone hopes it will, we will likely have a crisis in the supply of indium," Hersam said. "There's a great desire to identify materials - especially earth-abundant elements like carbon - that can take indium's place in solar technology."

Hersam and Marks' team has created an alternative to indium tin oxide using single-walled carbon nanotubes, tiny, hollow cylinders of carbon just one nanometer in diameter.

The researchers have gone further to determine the type of nanotube that is most effective in transparent conductors. Nanotubes' properties vary depending on their diameter and their chiral angle, the angle that describes the arrangement of carbon atoms along the length of the nanotube. These properties determine two types of nanotubes: metallic and semiconducting.

Metallic nanotubes, the researchers found, are 50 times more effective than semiconducting ones when used as transparent conductors in organic solar cells.

"We have now identified precisely the type of carbon nanotube that should be used in this application," Hersam said.

Because carbon nanotubes are flexible, as opposed to the brittle indium tin oxide, the researchers' findings could pave the way for many new applications in solar cells. For example, the military could incorporate the flexible solar cells into tent material to provide solar power directly to soldiers in the field, or the cells could be integrated into clothing, backpacks, or purses for wearable electronics.

"With this mechanically flexible technology, it's much easier to imagine integrating solar technology into everyday life, rather than carrying around a large, inflexible solar cell," Hersam said.

Researchers are now examining other layers of the solar cell to explore also replacing these with carbon-based nanomaterials.

Besides Hersam and Marks, other authors include Timothy P. Tyler, Ryan E. Brock, and Hunter J. Karmel. This work was supported by the Argonne Northwestern-Northwestern Solar Energy Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Discoveries

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Announcements

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Meteorite impact on a nano scale August 29th, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic