Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers use carbon nanotubes to make solar cells affordable, flexible

Abstract:
Researchers from Northwestern University have developed a carbon-based material that could revolutionize the way solar power is harvested. The new solar cell material - a transparent conductor made of carbon nanotubes - provides an alternative to current technology, which is mechanically brittle and reliant on a relatively rare mineral.

Researchers use carbon nanotubes to make solar cells affordable, flexible

Chicago, IL | Posted on September 28th, 2011

Due to the earth abundance of carbon, carbon nanotubes have the potential to boost the long-term viability of solar power by providing a cost-efficient option as demand for the technology increases. In addition, the material's mechanical flexibility could allow solar cells to be integrated into fabrics and clothing, enabling portable energy supplies that could impact everything from personal electronics to military operations.

The research, headed by Mark C. Hersam, professor of materials science and engineering and professor of chemistry, and Tobin J. Marks, Vladimir N. Ipatieff Professor of Catalytic Chemistry and professor of materials science and engineering, is featured on the cover of the October 2011 issue of Advanced Energy Materials, a new journal that specializes in science about materials used in energy applications.

Solar cells are comprised of several layers, including a transparent conductor layer that allows light to pass into the cell and electricity to pass out; for both these actions to occur, the conductor must be both electrically conductive and also optically transparent. Few materials concurrently possess both of these properties.

Currently, indium tin oxide is the dominant material used in transparent conductor applications, but the material has two potential limitations. Indium tin oxide is mechanically brittle, which precludes its use in applications that require mechanical flexibility. In addition, Indium tin oxide relies on the relatively rare element indium, so the projected increased demand for solar cells could push the price of indium to problematically high levels.

"If solar technology really becomes widespread, as everyone hopes it will, we will likely have a crisis in the supply of indium," Hersam said. "There's a great desire to identify materials - especially earth-abundant elements like carbon - that can take indium's place in solar technology."

Hersam and Marks' team has created an alternative to indium tin oxide using single-walled carbon nanotubes, tiny, hollow cylinders of carbon just one nanometer in diameter.

The researchers have gone further to determine the type of nanotube that is most effective in transparent conductors. Nanotubes' properties vary depending on their diameter and their chiral angle, the angle that describes the arrangement of carbon atoms along the length of the nanotube. These properties determine two types of nanotubes: metallic and semiconducting.

Metallic nanotubes, the researchers found, are 50 times more effective than semiconducting ones when used as transparent conductors in organic solar cells.

"We have now identified precisely the type of carbon nanotube that should be used in this application," Hersam said.

Because carbon nanotubes are flexible, as opposed to the brittle indium tin oxide, the researchers' findings could pave the way for many new applications in solar cells. For example, the military could incorporate the flexible solar cells into tent material to provide solar power directly to soldiers in the field, or the cells could be integrated into clothing, backpacks, or purses for wearable electronics.

"With this mechanically flexible technology, it's much easier to imagine integrating solar technology into everyday life, rather than carrying around a large, inflexible solar cell," Hersam said.

Researchers are now examining other layers of the solar cell to explore also replacing these with carbon-based nanomaterials.

Besides Hersam and Marks, other authors include Timothy P. Tyler, Ryan E. Brock, and Hunter J. Karmel. This work was supported by the Argonne Northwestern-Northwestern Solar Energy Research Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project