Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Edible carbon dioxide sponge: All-natural nanostructures could address pressing environmental problem

Abstract:
A year ago Northwestern University chemists published their recipe for a new class of nanostructures made of sugar, salt and alcohol. Now, the same team has discovered the edible compounds can efficiently detect, capture and store carbon dioxide. And the compounds themselves are carbon-neutral.

Edible carbon dioxide sponge: All-natural nanostructures could address pressing environmental problem

Chicago, IL | Posted on September 27th, 2011

The porous crystals -- known as metal-organic frameworks (MOFs) -- are made from all-natural ingredients and are simple to prepare, giving them a huge advantage over other MOFs. Conventional MOFs, which also are effective at adsorbing carbon dioxide, are usually prepared from materials derived from crude oil and often incorporate toxic heavy metals.

Other features of the Northwestern MOFs are they turn red when completely full of carbon dioxide, and the carbon capture process is reversible.

The findings, made by scientists working in the laboratory of Sir Fraser Stoddart, Board of Trustees Professor of Chemistry in the Weinberg College of Arts and Sciences, are published in the Journal of the American Chemical Society (JACS).

"We are able to take molecules that are themselves sourced from atmospheric carbon, through photosynthesis, and use them to capture even more carbon dioxide," said Ross S. Forgan, a co-author of the study and a postdoctoral fellow in Stoddart's laboratory. "By preparing our MOFs from naturally derived ingredients, we are not only making materials that are entirely nontoxic, but we are also cutting down on the carbon dioxide emissions associated with their manufacture."

The main component, gamma-cyclodextrin, is a naturally occurring biorenewable sugar molecule that is derived from cornstarch.

The sugar molecules are held in place by metals taken from salts such as potassium benzoate or rubidium hydroxide, and it is the precise arrangement of the sugars in the crystals that is vital to their successful capture of carbon dioxide.

"It turns out that a fairly unexpected event occurs when you put that many sugars next to each other in an alkaline environment -- they start reacting with carbon dioxide in a process akin to carbon fixation, which is how sugars are made in the first place," said Jeremiah J. Gassensmith, lead author of the paper and also a postdoctoral fellow in Stoddart's laboratory. "The reaction leads to the carbon dioxide being tightly bound inside the crystals, but we can still recover it at a later date very simply."

The fact that the carbon dioxide reacts with the MOF, an unusual occurrence, led to a simple method of detecting when the crystals have reached full capacity. The researchers place an indicator molecule, which detects changes in pH by changing its color, inside each crystal. When the yellow crystals of the MOFs are full of carbon dioxide they turn red.

The simplicity of the new MOFs, allied with their low cost and green credentials, have marked them as candidates for further commercialization. Ronald A. Smaldone, also a postdoctoral fellow in Stoddart's group and a co-author of the paper, added, "I think this is a remarkable demonstration of how simple chemistry can be successfully applied to relevant problems like carbon capture and sensor technology."

The title of the paper is "Strong and Reversible Binding of Carbon Dioxide in a Green Metal-Organic Framework." In addition to Stoddart, Gassensmith, Smaldone and Forgan, the other authors of the paper are Hiroyasu Furukawa and Omar M. Yaghi, from UCLA.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper is available at:

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Chemistry

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Fundamental Chemistry Findings Could Help Extend Moore’s Law: A Berkeley Lab-Intel collaboration outlines the chemistry of photoresist, enabling smaller features for future generations of microprocessors July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Highlights for 2014 national meeting of world’s largest scientific society July 8th, 2014

Sensors

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Iranian Scientists Use Nanosensors to Achieve Best Limit for Early Cancer Diagnosis July 19th, 2014

Discoveries

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Environment

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Development of an interactive tool for the implementation of environmental legislation for nanoparticles manufacturers July 4th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE