Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Super fast net just round the corner

Abstract:
What can you get when you combine graphene with metallic nanostructures? Improved harvesting light by graphene, which could potentially lead to super-fast Internet, a new UK study shows. The study, published in the journal Nature Communications, was funded in part by three EU projects: RODIN, GRAPHENE and NANOPOTS. RODIN ('Suspended graphene nanostructures') is backed under the Nanosciences, Nanotechnologies, Materials and new Production Technologies (NMP) Theme of the Seventh Framework Programme (FP7) to the tune of EUR 2.85 million. The GRAPHENE ('Physics and applications of graphene') and NANOPOTS ('Nanotube based polymer optoelectronics') projects have received European Research Council Starting Grants worth EUR 1.78 million and EUR 1.8 million, respectively.

Super fast net just round the corner

Brussels, Belgium | Posted on September 27th, 2011

A team of scientists, which includes Nobel Prize winners Professors Andre Geim and Kostya Novoselov, from the Universities of Manchester and Cambridge in the United Kingdom has pieced together the puzzle that could enhance the characteristics of graphene devices for use as photodetectors in future high-speed optical communications.

Combining graphene with metallic nanostructures triggered a huge enhancement in harvesting light by graphene without losing any speed. Not only would this help accelerate the Internet but other communications would get a boost as well. A key characteristic of graphene devices is that they are very fast, surpassing current Internet cables.

The scientists placed two closely spaced metallic wires on top of graphene and shone light on this structure. Doing this helped generate electric power. According to them, this simple device presents an elementary solar cell.

The biggest challenge for the researchers was dealing with low efficiency. Graphene is the thinnest material across the globe, absorbing just 3% of light. So the remaining light passes through without contributing to electrical power. To get the results they wanted, the team combined graphene with tiny metallic structures arranged on top of graphene.

Plasmonic nanostructures have helped advance the optical electric field felt by graphene and have concentrated light within the carbon layer, which has a thickness of one atom.

'Graphene seems a natural companion for plasmonics,' says Manchester's Dr Alexander Grigorenko. 'We expected that plasmonic nanostructures could improve the efficiency of graphene-based devices but it has come as a pleasant surprise that the improvements can be so dramatic.'

For his part, Professor Novoselov, also from the University of Manchester, says: 'The technology of graphene production matures day-by-day, which has an immediate impact both on the type of exciting physics which we find in this material, and on the feasibility and the range of possible applications. Many leading electronics companies consider graphene for the next generation of devices. This work certainly boosts graphene's chances even further.'

Commenting on the findings, Cambridge's Professor Andrea Ferrari says: 'So far, the main focus of graphene research has been on fundamental physics and electronic devices. These results show its great potential in the fields of photonics and optoelectronics, where the combination of its unique optical and electronic properties with plasmonic nanostructures, can be fully exploited, even in the absence of a bandgap, in a variety of useful devices, such as solar cells and photodetectors.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Communications:

University of Manchester:

University of Cambridge:

Related News Press

News and information

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Graphene/ Graphite

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

Discoveries

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017

Announcements

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

Photonics/Optics/Lasers

Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Research partnerships

Perking up and crimping the 'bristles' of polyelectrolyte brushes December 13th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project