Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Super fast net just round the corner

Abstract:
What can you get when you combine graphene with metallic nanostructures? Improved harvesting light by graphene, which could potentially lead to super-fast Internet, a new UK study shows. The study, published in the journal Nature Communications, was funded in part by three EU projects: RODIN, GRAPHENE and NANOPOTS. RODIN ('Suspended graphene nanostructures') is backed under the Nanosciences, Nanotechnologies, Materials and new Production Technologies (NMP) Theme of the Seventh Framework Programme (FP7) to the tune of EUR 2.85 million. The GRAPHENE ('Physics and applications of graphene') and NANOPOTS ('Nanotube based polymer optoelectronics') projects have received European Research Council Starting Grants worth EUR 1.78 million and EUR 1.8 million, respectively.

Super fast net just round the corner

Brussels, Belgium | Posted on September 27th, 2011

A team of scientists, which includes Nobel Prize winners Professors Andre Geim and Kostya Novoselov, from the Universities of Manchester and Cambridge in the United Kingdom has pieced together the puzzle that could enhance the characteristics of graphene devices for use as photodetectors in future high-speed optical communications.

Combining graphene with metallic nanostructures triggered a huge enhancement in harvesting light by graphene without losing any speed. Not only would this help accelerate the Internet but other communications would get a boost as well. A key characteristic of graphene devices is that they are very fast, surpassing current Internet cables.

The scientists placed two closely spaced metallic wires on top of graphene and shone light on this structure. Doing this helped generate electric power. According to them, this simple device presents an elementary solar cell.

The biggest challenge for the researchers was dealing with low efficiency. Graphene is the thinnest material across the globe, absorbing just 3% of light. So the remaining light passes through without contributing to electrical power. To get the results they wanted, the team combined graphene with tiny metallic structures arranged on top of graphene.

Plasmonic nanostructures have helped advance the optical electric field felt by graphene and have concentrated light within the carbon layer, which has a thickness of one atom.

'Graphene seems a natural companion for plasmonics,' says Manchester's Dr Alexander Grigorenko. 'We expected that plasmonic nanostructures could improve the efficiency of graphene-based devices but it has come as a pleasant surprise that the improvements can be so dramatic.'

For his part, Professor Novoselov, also from the University of Manchester, says: 'The technology of graphene production matures day-by-day, which has an immediate impact both on the type of exciting physics which we find in this material, and on the feasibility and the range of possible applications. Many leading electronics companies consider graphene for the next generation of devices. This work certainly boosts graphene's chances even further.'

Commenting on the findings, Cambridge's Professor Andrea Ferrari says: 'So far, the main focus of graphene research has been on fundamental physics and electronic devices. These results show its great potential in the fields of photonics and optoelectronics, where the combination of its unique optical and electronic properties with plasmonic nanostructures, can be fully exploited, even in the absence of a bandgap, in a variety of useful devices, such as solar cells and photodetectors.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Communications:

University of Manchester:

University of Cambridge:

Related News Press

Graphene

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

News and information

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

ECHA Planning Workshop on Regulatory Challenges in the Risk Assessment of Nanomaterials April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Discoveries

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Announcements

UT Arlington physicist creates new nanoparticle for cancer therapy April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Photonics/Optics/Lasers

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Research partnerships

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

Never say never in the nano-world March 31st, 2014

Diamonds are an oil's best friend: Rice University leads research to find the best nanofluid for heat transfer March 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE