Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Super fast net just round the corner

Abstract:
What can you get when you combine graphene with metallic nanostructures? Improved harvesting light by graphene, which could potentially lead to super-fast Internet, a new UK study shows. The study, published in the journal Nature Communications, was funded in part by three EU projects: RODIN, GRAPHENE and NANOPOTS. RODIN ('Suspended graphene nanostructures') is backed under the Nanosciences, Nanotechnologies, Materials and new Production Technologies (NMP) Theme of the Seventh Framework Programme (FP7) to the tune of EUR 2.85 million. The GRAPHENE ('Physics and applications of graphene') and NANOPOTS ('Nanotube based polymer optoelectronics') projects have received European Research Council Starting Grants worth EUR 1.78 million and EUR 1.8 million, respectively.

Super fast net just round the corner

Brussels, Belgium | Posted on September 27th, 2011

A team of scientists, which includes Nobel Prize winners Professors Andre Geim and Kostya Novoselov, from the Universities of Manchester and Cambridge in the United Kingdom has pieced together the puzzle that could enhance the characteristics of graphene devices for use as photodetectors in future high-speed optical communications.

Combining graphene with metallic nanostructures triggered a huge enhancement in harvesting light by graphene without losing any speed. Not only would this help accelerate the Internet but other communications would get a boost as well. A key characteristic of graphene devices is that they are very fast, surpassing current Internet cables.

The scientists placed two closely spaced metallic wires on top of graphene and shone light on this structure. Doing this helped generate electric power. According to them, this simple device presents an elementary solar cell.

The biggest challenge for the researchers was dealing with low efficiency. Graphene is the thinnest material across the globe, absorbing just 3% of light. So the remaining light passes through without contributing to electrical power. To get the results they wanted, the team combined graphene with tiny metallic structures arranged on top of graphene.

Plasmonic nanostructures have helped advance the optical electric field felt by graphene and have concentrated light within the carbon layer, which has a thickness of one atom.

'Graphene seems a natural companion for plasmonics,' says Manchester's Dr Alexander Grigorenko. 'We expected that plasmonic nanostructures could improve the efficiency of graphene-based devices but it has come as a pleasant surprise that the improvements can be so dramatic.'

For his part, Professor Novoselov, also from the University of Manchester, says: 'The technology of graphene production matures day-by-day, which has an immediate impact both on the type of exciting physics which we find in this material, and on the feasibility and the range of possible applications. Many leading electronics companies consider graphene for the next generation of devices. This work certainly boosts graphene's chances even further.'

Commenting on the findings, Cambridge's Professor Andrea Ferrari says: 'So far, the main focus of graphene research has been on fundamental physics and electronic devices. These results show its great potential in the fields of photonics and optoelectronics, where the combination of its unique optical and electronic properties with plasmonic nanostructures, can be fully exploited, even in the absence of a bandgap, in a variety of useful devices, such as solar cells and photodetectors.'

####

For more information, please click here

Copyright © European Commission

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Communications:

University of Manchester:

University of Cambridge:

Related News Press

News and information

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Graphene

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

New pricing report for bulk graphene materials September 13th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Discoveries

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Photonics/Optics/Lasers

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

Research partnerships

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE