Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bimetallic nanoantenna separates colours of light

The nanoantenna acts as a router for red and blue light, due to the nanoparticles of gold and silver having different optical properties. Image: Timur Shegai
The nanoantenna acts as a router for red and blue light, due to the nanoparticles of gold and silver having different optical properties.

Image: Timur Shegai

Abstract:
Researchers at Chalmers University of Technology have built a very simple nanoantenna that directs red and blue colours in opposite directions, even though the antenna is smaller than the wavelength of light. The findings - published in the online journal Nature Communications this week - can lead to optical nanosensors being able to detect very low concentrations of gases or biomolecules.

Bimetallic nanoantenna separates colours of light

Gothenburg, Sweden | Posted on September 24th, 2011

A structure that is smaller than the wavelength of visible light (390-770 nanometers) should not really be able to scatter light. But that is exactly what the new nanoantenna does. The trick employed by the Chalmers researchers is to build an antenna with an asymmetric material composition, creating optical phase shifts.

The antenna consists of two nanoparticles about 20 nanometers apart on a glass surface, one of silver and one of gold. Experiments show that the antenna scatters visible light so that red and blue colours are directed in opposite directions.

"The explanation for this exotic phenomenon is optical phase shifts," says Timur Shegai, one of the researchers behind the discovery. "The reason is that nanoparticles of gold and silver have different optical properties, in particular different plasmon resonances. Plasmon resonance means that the free electrons of the nanoparticles oscillate strongly in pace with the frequency of the light, which in turn affects the light propagation even though the antenna is so small."

The method used by the Chalmers researchers to control the light by using asymmetric material composition - such as silver and gold - is completely new. It is easy to build this kind of nanoantenna; the researchers have shown that the antennas can be fabricated densely over large areas using cheap colloidal lithography.

The research field of nanoplasmonics is a rapidly growing area, and concerns controlling how visible light behaves at the nanoscale using a variety of metal nanostructures. Scientists now have a whole new parameter - asymmetric material composition - to explore in order to control the light.

Nanoplasmonics can be applied in a variety of areas, says Mikael Käll, professor in the research group at Chalmers.

"One example is optical sensors, where you can use plasmons to build sensors which are so sensitive that they can detect much lower concentrations of toxins or signalling substances than is possible today. This may involve the detection of single molecules in a sample, for example, to diagnose diseases at an early stage, which facilitates quick initiation of treatment."

The results were presented at an international conference on optical nanosensors at Chalmers this week. Chalmers is one of the leading universities in nanoplasmonic biosensors, and 130 scientists from around the world are attending the conference.

The research has received financial support from the Swedish Foundation for Strategic Research, the Swedish Research Council and the Göran Gustafsson Foundation.

####

For more information, please click here

Contacts:
Christian Borg

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project