Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Record-breaking solar cell announced by multinational research team

Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.
Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.
Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance. Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.

Abstract:
The most efficient colloidal-quantum-dot solar cell ever created will be described in a scientific paper to be published in a print edition of the journal Nature Materials by a team of scientists that includes John Asbury, assistant professor of chemistry at Penn State. Other members of the research team are at the University of Toronto (U of T) in Canada and the King Abdullah University of Science & Technology (KAUST) in Saudi Arabia.

Record-breaking solar cell announced by multinational research team

University Park, PA | Posted on September 22nd, 2011

"We figured out how to shrink the wrappers that encapsulate quantum dots down to the smallest imaginable size -- a mere layer of atoms," said Professor Ted Sargent at U of T, the corresponding author on the work and the holder of the Canada Research Chair in Nanotechnology. Quantum dots are nanoscale semiconductors that capture light and convert it into electrical energy. Because of their small size, the dots can be sprayed onto flexible surfaces, including plastics, enabling the production of solar cells that are less expensive than the existing silicon-based version.

But a crucial challenge for the field has been improving their efficiency. The ideal design for greatest efficiency is one that tightly packs the quantum dots together. Until now, quantum dots have been capped with organic molecules that separate the nanoparticles by a nanometer -- making them too bulky for optimum efficiency. To solve the problem, the research team turned to inorganic ligands, sub-nanometer-sized atoms that bind to the quantum dot surfaces and take up less space.

"The inorganic ligands form the smallest possible shell that can be wrapped around quantum dots," Asbury explains. "It is the thinness of the shell that allows the quantum dots to pack so closely that electrons can flow smoothly through the material to make photocurrent."

The colloidal quantum dots examined by Asbury and his team members yielded the highest electrical currents, and the highest overall power-conversion efficiency, ever seen in colloidal quantum dot (CQD) solar cells. These performance results were certified by an external laboratory, Newport, that is accredited by the U.S. National Renewable Energy Laboratory.

"Extensive testing has confirmed that we were able to remove charge traps -- locations where electrons get stuck -- while still packing the quantum dots closely together," Asbury said. The combination of close packing and charge-trap elimination enabled unprecedented levels of photocurrent to flow through the solar cells, thus providing record efficiency.

A technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will enable the global commercialization of this new technology. "Through U of T's, MI's, and KAUST's partnership, we are poised to translate exciting research into tangible innovations that can be commercialized," said Sargent. "The world -- and the marketplace -- need solar innovations that break the existing compromise between performance and cost.

This research was supported by King Abdullah University of Science and Technology, the Petroleum Research Fund, the National Science Foundation, and the U. S. Office of Naval Research.

####

For more information, please click here

Contacts:
Barbara Kennedy
814-863-4682


John Asburyh
814-863-6309

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Quantum Dots/Rods

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Band Gaps, Made to Order: Engineers create atomically thin superlattice materials with precision September 26th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

Research partnerships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project