Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Record-breaking solar cell announced by multinational research team

Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.
Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.
Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance. Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.

Abstract:
The most efficient colloidal-quantum-dot solar cell ever created will be described in a scientific paper to be published in a print edition of the journal Nature Materials by a team of scientists that includes John Asbury, assistant professor of chemistry at Penn State. Other members of the research team are at the University of Toronto (U of T) in Canada and the King Abdullah University of Science & Technology (KAUST) in Saudi Arabia.

Record-breaking solar cell announced by multinational research team

University Park, PA | Posted on September 22nd, 2011

"We figured out how to shrink the wrappers that encapsulate quantum dots down to the smallest imaginable size -- a mere layer of atoms," said Professor Ted Sargent at U of T, the corresponding author on the work and the holder of the Canada Research Chair in Nanotechnology. Quantum dots are nanoscale semiconductors that capture light and convert it into electrical energy. Because of their small size, the dots can be sprayed onto flexible surfaces, including plastics, enabling the production of solar cells that are less expensive than the existing silicon-based version.

But a crucial challenge for the field has been improving their efficiency. The ideal design for greatest efficiency is one that tightly packs the quantum dots together. Until now, quantum dots have been capped with organic molecules that separate the nanoparticles by a nanometer -- making them too bulky for optimum efficiency. To solve the problem, the research team turned to inorganic ligands, sub-nanometer-sized atoms that bind to the quantum dot surfaces and take up less space.

"The inorganic ligands form the smallest possible shell that can be wrapped around quantum dots," Asbury explains. "It is the thinness of the shell that allows the quantum dots to pack so closely that electrons can flow smoothly through the material to make photocurrent."

The colloidal quantum dots examined by Asbury and his team members yielded the highest electrical currents, and the highest overall power-conversion efficiency, ever seen in colloidal quantum dot (CQD) solar cells. These performance results were certified by an external laboratory, Newport, that is accredited by the U.S. National Renewable Energy Laboratory.

"Extensive testing has confirmed that we were able to remove charge traps -- locations where electrons get stuck -- while still packing the quantum dots closely together," Asbury said. The combination of close packing and charge-trap elimination enabled unprecedented levels of photocurrent to flow through the solar cells, thus providing record efficiency.

A technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will enable the global commercialization of this new technology. "Through U of T's, MI's, and KAUST's partnership, we are poised to translate exciting research into tangible innovations that can be commercialized," said Sargent. "The world -- and the marketplace -- need solar innovations that break the existing compromise between performance and cost.

This research was supported by King Abdullah University of Science and Technology, the Petroleum Research Fund, the National Science Foundation, and the U. S. Office of Naval Research.

####

For more information, please click here

Contacts:
Barbara Kennedy
814-863-4682


John Asburyh
814-863-6309

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Military

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Linking superconductivity and structure May 28th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Energy

Technology for Tomorrow’s Market Opportunities and Challenges: LetiDays Grenoble Presents the Possibilities: June 24-25 Event Includes Focus on IoT-Augmented Mobility and Leti’s Latest Results on Silicon Technologies, Sensors, Health Applications and Smart Cities May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Quantum Dots/Rods

Statement by QD Vision regarding European Parliament’s Vote on Cadmium-Based Quantum Dots May 20th, 2015

Toward 'green' paper-thin, flexible electronics May 20th, 2015

Electricity generating nano-wizards: Quantum dots are an ideal nanolab to study the means to turning heat into electricity May 18th, 2015

QD Vision to Showcase Quantum Dot “Firsts” at Display Week 2015: Executives will present, demo current and future quantum dot technology May 13th, 2015

Research partnerships

Linking superconductivity and structure May 28th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Solar/Photovoltaic

Fine-tuned molecular orientation is key to more efficient solar cells May 26th, 2015

Efficiency record for black silicon solar cells jumps to 22.1 percent: Aalto University's researchers improved their previous record by over 3 absolute percents in cooperation with Universitat Politècnica de Catalunya May 18th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

Random nanowire configurations increase conductivity over heavily ordered configurations May 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project