Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Record-breaking solar cell announced by multinational research team

Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.
Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.
Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance. Left: Quantum dots capped with organic ligands. Bulky organic molecules (yellow and blue) has led to lower performance. Right: Quantum dots capped with the novel inorganic ligands reported in the work. Reduce bulk helped get electrons out, leading to record performance.

Abstract:
The most efficient colloidal-quantum-dot solar cell ever created will be described in a scientific paper to be published in a print edition of the journal Nature Materials by a team of scientists that includes John Asbury, assistant professor of chemistry at Penn State. Other members of the research team are at the University of Toronto (U of T) in Canada and the King Abdullah University of Science & Technology (KAUST) in Saudi Arabia.

Record-breaking solar cell announced by multinational research team

University Park, PA | Posted on September 22nd, 2011

"We figured out how to shrink the wrappers that encapsulate quantum dots down to the smallest imaginable size -- a mere layer of atoms," said Professor Ted Sargent at U of T, the corresponding author on the work and the holder of the Canada Research Chair in Nanotechnology. Quantum dots are nanoscale semiconductors that capture light and convert it into electrical energy. Because of their small size, the dots can be sprayed onto flexible surfaces, including plastics, enabling the production of solar cells that are less expensive than the existing silicon-based version.

But a crucial challenge for the field has been improving their efficiency. The ideal design for greatest efficiency is one that tightly packs the quantum dots together. Until now, quantum dots have been capped with organic molecules that separate the nanoparticles by a nanometer -- making them too bulky for optimum efficiency. To solve the problem, the research team turned to inorganic ligands, sub-nanometer-sized atoms that bind to the quantum dot surfaces and take up less space.

"The inorganic ligands form the smallest possible shell that can be wrapped around quantum dots," Asbury explains. "It is the thinness of the shell that allows the quantum dots to pack so closely that electrons can flow smoothly through the material to make photocurrent."

The colloidal quantum dots examined by Asbury and his team members yielded the highest electrical currents, and the highest overall power-conversion efficiency, ever seen in colloidal quantum dot (CQD) solar cells. These performance results were certified by an external laboratory, Newport, that is accredited by the U.S. National Renewable Energy Laboratory.

"Extensive testing has confirmed that we were able to remove charge traps -- locations where electrons get stuck -- while still packing the quantum dots closely together," Asbury said. The combination of close packing and charge-trap elimination enabled unprecedented levels of photocurrent to flow through the solar cells, thus providing record efficiency.

A technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will enable the global commercialization of this new technology. "Through U of T's, MI's, and KAUST's partnership, we are poised to translate exciting research into tangible innovations that can be commercialized," said Sargent. "The world -- and the marketplace -- need solar innovations that break the existing compromise between performance and cost.

This research was supported by King Abdullah University of Science and Technology, the Petroleum Research Fund, the National Science Foundation, and the U. S. Office of Naval Research.

####

For more information, please click here

Contacts:
Barbara Kennedy
814-863-4682


John Asburyh
814-863-6309

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Discoveries

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Announcements

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Military

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

Energy

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Quantum Dots/Rods

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Research partnerships

Getting a better look at living cells April 25th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Solar/Photovoltaic

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project