Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Responsive Labels for Cells

Abstract:
How do you stick a label on something as small as a cell? Cell-labeling techniques are explained, and the use of polymer-coated nanoparticles as environment-sensitive cell labels is demonstrated by scientists in Germany and Australia.

Responsive Labels for Cells

Melbourne, Australia and Marburg, Germany | Posted on September 22nd, 2011

Many scientists are rising to the challenge of effective cell labeling by using nanoparticles as labels; these labels may be either fluorescent, magnetic, or radioactive. Nanoparticles are ideal for this purpose because they are smaller than a cell and can be taken up via the cell machinery and they can be made biocompatible. Nanoparticles can also have properties that make them easily observed from the outside, like fluorescence or magnetism. However water-soluble nanoparticles are not easy to make on a large scale, which can limit their use.

Paul Mulvaney (University of Melbourne, Australia), Wolfgang Parak (Philipps University of Marburg, Germany), and co-workers have reviewed attempts to date to make many sorts of nanoparticles soluble in water. They describe different approaches taken by various scientists, including ligand exchange and encapsulation.

Ligand exchange is useful because the smallest water-soluble nanoparticles can be made in this way, but it can reduce the quantum yield of fluorescent particles and the stability of all particles. This method can, however, be very useful to introduce new functional groups to the particle surface.

Encapsulation of nanoparticles with silica or polymers is another approach to increasing their water-solubility. Growing a silica shell around the particle adds both solubility and chemical functionality, but involves a complex procedure, whereas surrounding the nanoparticle with a layer of polymer that is attracted to both water and the particle can be relatively straightforward to achieve by self-assembly and the procedure does not change much for different particles, which makes it universal. Polymer-coated nanoparticles are very stable, but larger than those produced by ligand exchange.

The researchers don't stop there; they expand upon work they've done using polymer-coated nanoparticles to make sense of cell behavior. In particular, if a pH-sensitive and fluorescent polymer is chosen to coat the nanoparticles, then information can be gleaned about uptake into cells of the particle and any changes in the environment once it is there. So scientists truly can put responsive labels into cells, which should enable us to understand cell behavior better in the future.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project