Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A new way to go from nanoparticles to supraparticles

“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”
Image courtesy of Argonne National Laboratory
“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”

Image courtesy of Argonne National Laboratory

Abstract:
Controlling the behavior of nanoparticles can be just as difficult trying to wrangle a group of teenagers. However, a new study involving the U.S. Department of Energy's Argonne National Laboratory has given scientists insight into how tweaking a nanoparticle's attractive electronic qualities can lead to the creation of ordered uniform "supraparticles."

A new way to go from nanoparticles to supraparticles

Argonne, IL | Posted on September 19th, 2011

"There's a delicate balance you have to strike," said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne's Advanced Photon Source. "If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you'll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they'll never come together in the first place."

Researchers from the University of Michigan and China also collaborated on the study.

This problem of trying to achieve the right kind of balance has underpinned an entire field of colloidal research, according to Lee. But even if the right equilibrium is struck to promote the slow, steady growth of a supraparticle, up until now researchers have still had very little way of controlling the size of the particle that would grow. "If you were able to make the attractive force just a little stronger than the repulsive force, you'd see the growth of a crystal—but you wouldn't be able to dictate how big it grew," he said.

The Argonne research focused on finding a way for a supraparticle to automatically stop its own growth. Such a condition could only occur if the net attractive force of the nanoparticles toward the inside of the supraparticle was greater than that of the net attractive force of the nanoparticles that formed the edge of the supraparticle—a so-called "core-shell morphology."

Although core-shell morphologies had been observed in previous research, those earlier studies had concentrated on the types of supraparticles created by "monodisperse" nanoparticles—those that, like marbles, would share a common size and shape. "It's easier to make individuals cluster into larger groups if they have characteristics in common than if they don't," Lee said. "It is just like high school in that way."

Instead of sticking with monodispersity, however, the Argonne research focused instead on "polydisperse" nanoparticles—those with a wide variety of sizes, masses, and configurations. "The advantage with our technique is that there's no longer a need for monodispersity. You can mix two different components—like a metal and a semiconductor—and still see the same kind of controlled self-limiting assembly."

Although the research into supraparticles born from polydisperse collections of nanoparticles is still in its infancy, Lee and his colleagues believe that the methodology could find its way into a number of different applications, perhaps ranging from optics to drug delivery to photovoltaics. "When you work in nanotechnology, we have to ask ‘can we do this?' before we really know what our discovery will be useful for," explained Lee. "We hope that further investigation will open up new lines of discovery that we have not even conceived of yet."

An article based on the research appears in the September 2011 issue of Nature Nanotechnology. The research was funded by the Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science, the U.S. Department of Defense, and the National Science Foundation, among others.

By Jared Sagoff

####

About Argonne National Laboratory
rgonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Follow Argonne on Twitter at:

Related News Press

News and information

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Laboratories

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Cleaning or Etching Items with Unique Geometries Requires Specialized Expertise June 27th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Physics

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Discoveries

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Research partnerships

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project