Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > A new way to go from nanoparticles to supraparticles

“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”
Image courtesy of Argonne National Laboratory
“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”

Image courtesy of Argonne National Laboratory

Abstract:
Controlling the behavior of nanoparticles can be just as difficult trying to wrangle a group of teenagers. However, a new study involving the U.S. Department of Energy's Argonne National Laboratory has given scientists insight into how tweaking a nanoparticle's attractive electronic qualities can lead to the creation of ordered uniform "supraparticles."

A new way to go from nanoparticles to supraparticles

Argonne, IL | Posted on September 19th, 2011

"There's a delicate balance you have to strike," said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne's Advanced Photon Source. "If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you'll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they'll never come together in the first place."

Researchers from the University of Michigan and China also collaborated on the study.

This problem of trying to achieve the right kind of balance has underpinned an entire field of colloidal research, according to Lee. But even if the right equilibrium is struck to promote the slow, steady growth of a supraparticle, up until now researchers have still had very little way of controlling the size of the particle that would grow. "If you were able to make the attractive force just a little stronger than the repulsive force, you'd see the growth of a crystal—but you wouldn't be able to dictate how big it grew," he said.

The Argonne research focused on finding a way for a supraparticle to automatically stop its own growth. Such a condition could only occur if the net attractive force of the nanoparticles toward the inside of the supraparticle was greater than that of the net attractive force of the nanoparticles that formed the edge of the supraparticle—a so-called "core-shell morphology."

Although core-shell morphologies had been observed in previous research, those earlier studies had concentrated on the types of supraparticles created by "monodisperse" nanoparticles—those that, like marbles, would share a common size and shape. "It's easier to make individuals cluster into larger groups if they have characteristics in common than if they don't," Lee said. "It is just like high school in that way."

Instead of sticking with monodispersity, however, the Argonne research focused instead on "polydisperse" nanoparticles—those with a wide variety of sizes, masses, and configurations. "The advantage with our technique is that there's no longer a need for monodispersity. You can mix two different components—like a metal and a semiconductor—and still see the same kind of controlled self-limiting assembly."

Although the research into supraparticles born from polydisperse collections of nanoparticles is still in its infancy, Lee and his colleagues believe that the methodology could find its way into a number of different applications, perhaps ranging from optics to drug delivery to photovoltaics. "When you work in nanotechnology, we have to ask ‘can we do this?' before we really know what our discovery will be useful for," explained Lee. "We hope that further investigation will open up new lines of discovery that we have not even conceived of yet."

An article based on the research appears in the September 2011 issue of Nature Nanotechnology. The research was funded by the Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science, the U.S. Department of Defense, and the National Science Foundation, among others.

By Jared Sagoff

####

About Argonne National Laboratory
rgonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Follow Argonne on Twitter at:

Related News Press

News and information

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Laboratories

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Berkeley Lab scientists grow atomically thin transistors and circuits July 13th, 2016

Setting the gold standard: UF chemistry professor is first to use light to make gold crystal nanoparticles July 11th, 2016

Physics

Entanglement: Chaos - Researchers at UCSB blur the line between classical and quantum physics by connecting chaos and entanglement July 14th, 2016

Physicists couple distant nuclear spins using a single electron: For the first time, researchers at the University of Basel have coupled the nuclear spins of distant atoms using just a single electron July 12th, 2016

Govt.-Legislation/Regulation/Funding/Policy

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Weird quantum effects stretch across hundreds of miles July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Discoveries

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Announcements

Making magnets flip like cats at room temperature: Heusler alloy NiMnSb could prove valuable as a new material for digital information processing and storage July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

A 'smart dress' for oil-degrading bacteria July 24th, 2016

Military

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

'Green' electronic materials produced with synthetic biology July 16th, 2016

New method can identify chemical warfare agents more easily: The method could help governments protect people from horrifying toxic effects July 15th, 2016

Research partnerships

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

Rice's 'antenna-reactor' catalysts offer best of both worlds: Technology marries light-harvesting nanoantennas to high-reaction-rate catalysts July 18th, 2016

Researchers invent 'smart' thread that collects diagnostic data when sutured into tissue: Advances could pave way for new generation of implantable and wearable diagnostics July 18th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic