Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A new way to go from nanoparticles to supraparticles

“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”
Image courtesy of Argonne National Laboratory
“There’s a delicate balance you have to strike,” said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne’s Advanced Photon Source. “If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you’ll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they’ll never come together in the first place.”

Image courtesy of Argonne National Laboratory

Abstract:
Controlling the behavior of nanoparticles can be just as difficult trying to wrangle a group of teenagers. However, a new study involving the U.S. Department of Energy's Argonne National Laboratory has given scientists insight into how tweaking a nanoparticle's attractive electronic qualities can lead to the creation of ordered uniform "supraparticles."

A new way to go from nanoparticles to supraparticles

Argonne, IL | Posted on September 19th, 2011

"There's a delicate balance you have to strike," said Argonne physicist Byeongdu Lee, who led the characterization of the supraparticles using high-energy X-rays provided by Argonne's Advanced Photon Source. "If the attractive Van der Waals force is too strong, all the nanoparticles will smash together at once, and you'll end up with an ugly, disordered glass. But if the repulsive Coulomb force is too strong, they'll never come together in the first place."

Researchers from the University of Michigan and China also collaborated on the study.

This problem of trying to achieve the right kind of balance has underpinned an entire field of colloidal research, according to Lee. But even if the right equilibrium is struck to promote the slow, steady growth of a supraparticle, up until now researchers have still had very little way of controlling the size of the particle that would grow. "If you were able to make the attractive force just a little stronger than the repulsive force, you'd see the growth of a crystal—but you wouldn't be able to dictate how big it grew," he said.

The Argonne research focused on finding a way for a supraparticle to automatically stop its own growth. Such a condition could only occur if the net attractive force of the nanoparticles toward the inside of the supraparticle was greater than that of the net attractive force of the nanoparticles that formed the edge of the supraparticle—a so-called "core-shell morphology."

Although core-shell morphologies had been observed in previous research, those earlier studies had concentrated on the types of supraparticles created by "monodisperse" nanoparticles—those that, like marbles, would share a common size and shape. "It's easier to make individuals cluster into larger groups if they have characteristics in common than if they don't," Lee said. "It is just like high school in that way."

Instead of sticking with monodispersity, however, the Argonne research focused instead on "polydisperse" nanoparticles—those with a wide variety of sizes, masses, and configurations. "The advantage with our technique is that there's no longer a need for monodispersity. You can mix two different components—like a metal and a semiconductor—and still see the same kind of controlled self-limiting assembly."

Although the research into supraparticles born from polydisperse collections of nanoparticles is still in its infancy, Lee and his colleagues believe that the methodology could find its way into a number of different applications, perhaps ranging from optics to drug delivery to photovoltaics. "When you work in nanotechnology, we have to ask ‘can we do this?' before we really know what our discovery will be useful for," explained Lee. "We hope that further investigation will open up new lines of discovery that we have not even conceived of yet."

An article based on the research appears in the September 2011 issue of Nature Nanotechnology. The research was funded by the Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science, the U.S. Department of Defense, and the National Science Foundation, among others.

By Jared Sagoff

####

About Argonne National Laboratory
rgonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Jared Sagoff
630/252-5549

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Follow Argonne on Twitter at:

Related News Press

News and information

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Laboratories

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Physics

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Announcements

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE