Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UMass Amherst Nanotechnology Center Receives $20 Million Renewal of Federal Grant to Boost Advanced Manufacturing, Economic Growth

Abstract:
The University of Massachusetts Amherst has received a five-year, $20 million grant from the National Science Foundation (NSF) to support a national research center on nanomanufacturing. The grant will fund the university's Center for Hierarchical Manufacturing (CHM).

UMass Amherst Nanotechnology Center Receives $20 Million Renewal of Federal Grant to Boost Advanced Manufacturing, Economic Growth

Amherst, MA | Posted on September 19th, 2011

A signature CHM effort is focused on roll-to-roll nanoscale processing of flexible electronics and high technology devices such as solar cells, cell phone displays, batteries and sensors. Roll-to-roll processing is similar to how photographic film moves through a camera from one spindle to another or how newspapers are printed, but with chemical and physical processing in between.

This is the second round of NSF funding for the center. The center works closely with private industry seeking to boost their business and the Massachusetts economy by tapping into the advanced technology generated and refined by the center. When the center was created in 2006, it received a $16 million federal grant and $7 million in state matching funds.

UMass Amherst Chancellor Robert C. Holub, Eric T. Nakajima of the state‚s executive Office of Housing and Economic Development, and industry executives James M. Casey from FLEXcon of Spencer and Michael D. McCreary of E Ink of Cambridge, attended today‚s grant announcement at the Conte Polymer Research Center. Through the grant the center will concentrate its efforts on its new Roll-to-Roll (R2R) Process Facility for Nanomanufacturing. Working with Carpe Diem Technologies of Franklin. CHM scientists have developed a custom manufacturing laboratory to scale up and integrate nanoimprint patterning and coating of self-assembling materials onto a high-speed web.

The CHM specializes in the science and engineering of creating nanometer-scale structures thousands of times smaller than the width of a human hair as building blocks for manufacturing device components and systems. Initial work at the center has concentrated on how nanoscale structures can be engineered from polymers for applications in precision microelectronics, focusing primarily on silicon-wafer based computer chip technology. With the new grant, the CHM will turn its attention to a large-volume, low-cost, roll-to-roll manufacturing processes currently used in the advanced printing, coating and flexible electronics industries.

CHM director James Watkins, a faculty member in polymer science and engineering, said, "Massachusetts has a rich history in papermaking, printing and coating technologies. We'd like to design tools and processes that are as close as possible to the roll-to-roll platforms that area companies are familiar with. This approach has the potential for terrific synergy with local industry and the possibility of creating advanced manufacturing jobs that are anchored in the region."

Michael F. Malone, vice chancellor for research and engagement, said having an impact on advanced manufacturing is aligned with UMass Amherst‚s desire to promote innovation and applied research in collaboration with industry. "The new experimental facility we are announcing with the award of this grant will enable companies to explore these emerging nanomanufacturing methods with us and to be part of the innovation process within the growing field of printed electronics."

Watkins is convinced that cost-effective manufacturing of nanotechnology-enabled products and materials is critical for American manufacturing competitiveness in sectors such as energy generation and storage, chemical separations, flexible displays and electronics, and sensors. "Nanotechnology can lead to significant performance enhancements in each of these areas, but keeping costs down is a number one concern for many kinds of products," he said. "By designing new ways to mass-produce high-technology devices cheaply and quickly, we hope to allow innovations that can benefit society to move more rapidly from the laboratory into real products. That's really the value this center provides." Because the objective of roll-to-roll is to get around expensive top-down processing techniques commonly employed in the semiconductor industry, the CHM focuses on the design of devices that make sense for these assembly techniques. Mark Tuominen, a physics faculty member who co-directs the CHM, notes that the process can create structures that actually exhibit new behavior. "Our devices are often designed to exploit the unique character of the materials produced," he said.

The university‚s top-rated polymer science and engineering program leads the CHM‚s multi-disciplinary approach to nanotechnology and advanced manufacturing. Other partners on the grant include the Massachusetts Institute of Technology (MIT), the National Institute of Standards and Technology (NIST), Rice University, University of Michigan, University of Puerto Rico Rio Piedras, University of Indiana and Mount Holyoke College. The CHM is designated by the NSF as one of the elite Nanoscale Science and Engineering Centers in the U.S. With a roll-to-roll based manufacturing system capable of generating literally billions of individual electronic devices every minute, accuracy and quality are of prime importance. The role of NIST and MIT in the center involves the development of measurement techniques to control manufacturing processes at the nanoscale.

The core technology of the center is based on chemical methods for synthesizing ordered hybrid materials, nanoscale templates and patterns, primarily out of polymers. The polymers are designed to "self-assemble," spontaneously organizing into specified nanoscale structures upon simple coating from solution. Processes like this, which scientists at UMass Amherst including Professor Tom Russell have pioneered since the 1990s, result in "massively parallel" arrays of precisely designed nanostructures. These approaches are now being extended to multi-component, functional hybrid materials and will be combined with nanoimprint lithography (NIL) to build devices on flexible substrates. NIL technology provides a means of printing or embossing nanoscale features on a moving web that can serve as part of the device or be used in a process to pattern the device.

####

For more information, please click here

Contacts:
Patrick J. Callahan
Phone: 13/545-0444


James J. Watkins
413/545-2569

Copyright © University of Massachusetts Amherst

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Materials/Metamaterials

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

How UEA research could help build computers from DNA August 19th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Exercise-induced hormone irisin is not a 'myth' August 14th, 2015

Printing/Lithography/Inkjet/Inks

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

New research may enhance display & LED lighting technology: Large-area integration of quantum dots and photonic crystals produce brighter and more efficient light August 9th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic