Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Post-silicon computing: A tiny 'toy' with big potential could transform the way computing is done, thanks to a grant from NSF to Pitt and partner universities

Abstract:
Could Pittsburgh be the nation's next "Strontium Valley"? The University of Pittsburgh is the lead institution on a $1.8 million grant from the National Science Foundation and the Nanoelectronics Research Initiative (NRI) of the Semiconductor Research Corporation (SRC) to bring a new kind of computer out of the lab and into the real world. The goal of the group, led by Jeremy Levy, a professor of physics and astronomy in Pitt's School of Arts and Sciences, is no less than transforming the way computing is done.

Post-silicon computing: A tiny 'toy' with big potential could transform the way computing is done, thanks to a grant from NSF to Pitt and partner universities

Pittsburgh, PA | Posted on September 19th, 2011

The four-year grant, titled "Scalable Sensing, Storage, and Computation With a Rewritable Oxide Nanoelectronics Platform," also involves researchers from the University of Wisconsin and Northwestern University. The program aims to create new high-tech industries and jobs in the United States.

"The search for a new semiconductor device that will provide the United States with a leadership position in the global era of nanoelectronics relies on making discoveries at these kinds of advanced universities," said Jeff Welser, director of the NRI for SRC.

From Etch-A-Sketch® to Tiny Transistors

Levy and his team have invented a tiny Etch-A-Sketch® that draws infinitesimally small "wires" on a surface, then erases them. The device works by switching an oxide crystal between insulating and conducting states. The interface between these two materials can be switched between an insulating and metallic state using a sharp conducting probe. Electronic circuits can be "written" and "erased" at scales approaching the distance between atoms (two nanometers). The device, less than four nanometers wide, enables photonic interaction with objects as small as single molecules or quantum dots.

This research grant explicitly addresses key scientific and technological challenges that, if overcome, could lead turn the "Etch-A-Sketch®" into something real and useful—from being just a toy in a science lab to a possible replacement for conventional electronics made from silicon devices.

Beyond being just plain cool, this device could be the basis of an entirely new kind of transistor.

Transistors in a computer are the on/off switches that enable the efficient implementation of complex computational systems. And for the last half century, they've been getting smaller and smaller, according to (Intel founder Gordon) "Moore's law": The number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years. At some point, though, this trend has to stop. Materials start acting "weird" when they are made too small. The useful properties of silicon, for example, are believed to break down at distances smaller than 10 nanometers.

"The question is, once you've pushed silicon to its limit, is there going to be another system to do computation?" asks Levy. That's really what we've been granted funding to explore. We're trying to break down the major barriers that are potential show-stoppers that would otherwise make it difficult to turn these new types of devices into real, useful things."

In 2008, Levy and colleagues reported in Science that they had made a transistor with elements that were five interatomic distances wide. "These are really, really small transistors," Levy emphasizes. "We believe that they behave in a fundamentally different way from normal transistors."

To develop useful electronics, it is imperative to develop a scheme capable of creating and manipulating large numbers of devices. If it takes a minute to make a transistor, it would take a year to make a billion of them. This scaling is achieved through the use of large probe arrays.

Levy uses an atomic force microscope, a specialized instrument that moves a probe and along a surface, to create the transistors. Another method, used by Chad Mirkin at Northwestern University, has developed ways of producing millions of such tips on a single wafer. "The idea is to do parallel writing—to have all of these different tips working in parallel," says Levy. That way, manufacturing takes a few minutes instead of a year.

New Materials, New Ways of Sensing and Storage

How today's computers process information depends on a fixed architecture of ones and zeros—digital logic. Levy envisions using new materials that might not follow that same architecture. "We want the material to tell us the best way it can do computation, rather than trying to impose an old architecture that was really designed for another type of material," he says. "We want to listen to the material, and then map information processing onto what it's good at."

Professors Mark Rzchowski and Jack Ma at the University of Wisconsin will focus on this issue. The materials will be working with are part of a family known as "complex oxides". This class of materials shares many of the semiconducting properties of silicon, but have a wealth of other properties that make them interesting for computing, storage and sensing applications.

All computers require storage, but they store this information using very different architectures than the computer parts. In addition, an important function of electronics is that semiconductors can be used for sensing - which in this case really means sensing of light.

"We want to try to integrate all of these things together and have a platform that allows us to 'write' or 'erase' components capable of all of these functions," Levy says.

The principal material they wish to study is a sandwich of two such oxides: a thick layer of strontium titanate, with a thin (1.2 nanometer) layer of lanthanum aluminate. These materials will be grown in the laboratory of Professor Chang-Beom Eom at the University of Wisconsin.

Energy Efficiency

Another issue Levy is studying is the amount of power that is consumed by devices as they get smaller. With laptops, for example, clock speed—processor speed—used to be everything. But now, it's not touted as much. "Of course, that's because manufacturers can't make it go faster," Levy points out. "They could increase the clock speed, but it would melt the silicon."

Not only is making computing more energy efficient good for the environment, it's also practical. "What we're interested in doing is trying to see if we can create info processing much closer to the fundamental limits," Levy says. "We know we can make things small; the question is can we make them small and not heat up to the temperature of the sun?"

OnRamp to Success

The grant also includes an outreach component. A new "OnRamp" education program targets specific difficulties that students have in their subdiscipline while beginning their research careers. OnRamp tutorials are developed by beginning graduate students as they "learn the ropes" of doing research. Graduate students help develop research-based learning modules, which are shared with a broader research community—"putting a ramp there to smooth out the bumps in the road so that people can get moving with research faster," says Pitt professor of physics and astronomy Chandralekha Singh, who is leading this OnRamp program.

Such tools have been shown to help underrepresented groups.

In addition, both Pitt and Wisconsin continue to expand their high school outreach programs aimed at increasing the numbers of underrepresented groups in science and engineering disciplines.

####

About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the more than 220 years since, the University has evolved into an internationally recognized center of learning and research.

About SRC-NRI

The Nanoelectronics Research Initiative is one of three research program entities of SRC. Celebrating 29 years of collaborative research for the semiconductor industry, SRC defines industry needs and invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America's highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry.

Companies participating in NRI are GLOBALFOUNDRIES, IBM, Intel Corporation, Micron Technology and Texas Instruments. These companies assign researchers to interact with the university teams. This kind of university-industry engagement will be instrumental in order for NRI to reach its goal of demonstrating the feasibility of novel computing devices in simple computer circuits during the next five to 10 years.

For more information, visit nri.src.org.

About NSF

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards more than $400 million in professional and service contracts yearly. For more information, visit www.nsf.gov.

For more information, please click here

Contacts:
Karen Hoffmann

412-444-5946

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information on Levy's research, visit:

Related News Press

News and information

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Jobs

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Participate in the development of Malaysia’s National Graphene Action Plan 2020 October 10th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Announcements

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project