Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > A*STAR Institute of Microelectronics Joins Forces With University of Washington to Provide Platform to Accelerate the Development of Cutting-Edge Silicon Photonics

Abstract:
A*STAR Institute of Microelectronics (IME) and the University of Washington announce that they will join forces to provide shared Silicon Photonics processes as part of the Optoelectronics Systems Integration in Silicon programme (OpSIS). This will help the research and development (R&D) community significantly reduce the fabrication cost of silicon photonics integrated circuits.

A*STAR Institute of Microelectronics Joins Forces With University of Washington to Provide Platform to Accelerate the Development of Cutting-Edge Silicon Photonics

Singapore | Posted on September 17th, 2011

Hosted in University of Washington's Institute for Photonic Integration, OpSIS is a new foundry service to facilitate R&D in Silicon Photonics technology. Under this partnership, IME will provide its in-house silicon photonics platform technology together with its fabrication and integration expertise in multi-GHz photonic devices. Such devices include integrated optical modulators and photo-detectors, edge-couplers, waveguides, array waveguide gratings (AWG), bends, couplers, ring resonators, splitters, multi-mode-interferometer (MMI), add/drop filters, crossing, and rotators. In return, the OPSIS team at University of Washington will contribute to IME's extensive silicon photonics device library, a series of very high-bandwidth devices, including photo detectors and modulators at speeds in excess of 20 GHz.

The silicon photonics integrated circuits to be created under this programme will be immediately available to the photonic research community worldwide, and in the process, facilitate technological advancements and proliferate creative ideas for the development of the next generation devices. As the platform will be offered through multi-project wafer (MPW) runs, which allow users from multiple projects to share the costs of a single fabrication run, research costs are lowered significantly for individual projects.

"As silicon photonics goes beyond R&D to become mainstream technology, IME is excited and well positioned to enable the photonics research community to take this technology to the next level to fulfill its vast potential in every area requiring high speed interconnects," notes Prof. Dim-Lee Kwong, the Executive Director of IME.

"We would like the photonics industry, 10 years from now, to function in a way that's very similar to the electronics industry today. OPSIS' shuttle runs will aid that development by reducing research and development costs by more than 100 times for an individual research team taking part," says UW's Michael Hochberg, director of the Institute for Photonic Integration and assistant professor of electrical engineering at the UW.

####

About A*STAR Institute of Microelectronics (IME)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners.

About the Institute of Microelectronics (IME)

The A*STAR Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information, visit IME on the Internet: www.ime.a-star.edu.sg.

About OpSIS and the Institute for Photonic Integration

OpSIS is a new foundry service, hosted at the University of Washington Institute for Photonic Integration, for silicon photonics through which the community shares the cost of fabricating complex chip-scale systems across many projects.

For more information, please go to
depts.washington.edu/uwopsis/about/overview.html

To participate in an upcoming OPSIS-IME shuttle, send email to or .

For more information, please click here

Contacts:
For UW

Media Contact:
Michael Hochberg
University of Washington


Alternative Contact:
Thierry Pinguet
DID: +1-(206) 616-4878



For IME

Media Contact:
Cindy Chew
Institute of Microelectronics
DID: +65-6770-5375


For Technical Enquiries:
Patrick Lo
DID: +65-6770-5705

Copyright © The Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Chip Technology

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Announcements

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Instant-start computers possible with new breakthrough December 19th, 2014

Aculon Hires New Business Development Director December 19th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Photonics/Optics/Lasers

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New technique allows low-cost creation of 3-D nanostructures December 8th, 2014

Alliances/Partnerships/Distributorships

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

New 'electronic skin' for prosthetics, robotics detects pressure from different directions December 10th, 2014

SEMATECH Reports Significant Progress in EUV Resist Outgas Testing: Technologists from SEMATECH and JSR demonstrate outgas test results that further enable EUV lithography for high-volume manufacturing readiness December 3rd, 2014

Toward a low-cost 'artificial leaf' that produces clean hydrogen fuel December 3rd, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE