Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UC Team Finds Stable RNA Nano-Scaffold Within Virus Core

Peixuan Guo, PhD is the Director of the NIH Nanomedicine Development Center at University of Cincinnati
Peixuan Guo, PhD is the Director of the NIH Nanomedicine Development Center at University of Cincinnati

Abstract:
With the discovery of a RNA nano-scaffold that remains unusually stable in the body, researchers at the University of Cincinnati (UC) have overcome another barrier to the development of therapeutic RNA nanotechnology.

UC Team Finds Stable RNA Nano-Scaffold Within Virus Core

Cincinnati, OH | Posted on September 12th, 2011

Peixuan Guo, PhD, Dane and Mary Louise Miller Endowed Chair and professor of biomedical engineering, and his colleagues in UC's College of Engineering and Applied Sciences, report the construction of a thermodynamically stable RNA nanoparticle online in the journal Nature Nanotechnology.

The nanoparticle, constructed from a three-way junction (3WJ) motif of packaging RNA (pRNA) molecules, can serve as a platform for building larger, multifunctional nanoparticles, says Guo, which can then be injected into the body to deliver therapeutics to targeted cells.

"RNA nanoparticles have applications in treating cancers and viral infections," he says, "but one of the problems in the field is that RNA nanoparticles are relatively unstable. Without covalent bonds or cross-linking to keep them together, the nanoparticles produced via self assembly can dissociate when injected into animal and human circulation systems, where they exist at very low concentrations."

In the work, Guo and researchers explored the unique structure of the DNA packaging motor of bacteriophage phi29, a virus that infects bacteria. The motor is geared by a ring of pRNA molecules containing interlocking loops and helical domains, which are joined together by a strong 3WJ motif.

"The pRNA is extraordinary strong," says Guo, "since it is a mechanical part that nature uses to gear a powerful motor. This strength makes it an ideal platform for constructing RNA nanoparticles. Furthermore, the core has unique and unusually stable features, such as resistance to strong denaturants like urea and the ability remains intact at ultra-low concentrations in the absence of magnesium."

Using three small fragments of RNA with high affinity for assembling into larger structures, researchers were able to recreate the 3WJ core outside the pRNA structure. In addition, each arm of the 3WJ core can be fused to siRNA molecules, receptor-binding ligands and RNA aptamers, molecular tools necessary for the nanoparticle to find a targeted cell inside the body and silence genes within it.

The resulting nanoparticle remained stable and functional in vitro and, when introduced in vivo, targeted tumors specifically without diffusing to other critical organs or normal tissues.

"Making fusion complexes of DNA or RNA is not hard," says Guo, "but ensuring the appropriate folding of individual modules within the complex to retain their function after fusion is a difficult task. The pRNA 3WJ core directs the folding of individual functional modules, and the stability of the 3WJ core ensures that each fusion module remain folded for proper function."

Earlier this year, Guo and his team overcame another obstacle to RNA nanotechnology, the risk posed by RNase, a common enzyme that quickly degrades RNA upon contact. By replacing a chemical group in RNA's ribose ring, Guo's team was able to make the RNA resistant to degradation, while retaining its ability to assemble into nanoparticles and form appropriate 3D structure and function.

Guo has pioneered RNA nanotechnology since 1998, when his lab discovered that RNA nanoparticles in the bacteriophage phi29 virus can be constructed by self-assembly using re-engineered fragments to gear a nanomotor to power DNA into the virus protein shell.

He serves as director of UC's National Institutes of Health (NIH) Nanomedicine Development Center, and director of the Cancer Nanotechnology Platform Partnership Program at UC, funded by the National Cancer Institute.

This research was supported by the National Institute of General Medical Sciences, National Institutes of Health.

Co-authors include Dan Shu, Yi Shu and Farzin Haque at UC and Sherine Abdelmawla at Kylin Therapeutics, Inc. Guo is a co-founder of Kylin Therapeutics, Inc.

####

For more information, please click here

Contacts:
Katy Cosse
(513) 558-0207

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Nanomedicine

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE