Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NSF Announces Results of the Materials Research Centers and Teams Competition: The centers and teams support outstanding interdisciplinary materials research and education

This image shows an artistic rendering of the metal tip of the special microscope used to perform 3D force field mapping of materials at Yale University. The microscope is a unique combined scanning tunneling/atomic force microscope that can operate at temperatures close to absolute zero. It can simultaneously map out the chemical and electrical properties of surfaces at the atomic scale, while also describing the precise layout and identity of the atoms that make up the surface of the material.

Credit: Udo Schwarz, Yale University
This image shows an artistic rendering of the metal tip of the special microscope used to perform 3D force field mapping of materials at Yale University. The microscope is a unique combined scanning tunneling/atomic force microscope that can operate at temperatures close to absolute zero. It can simultaneously map out the chemical and electrical properties of surfaces at the atomic scale, while also describing the precise layout and identity of the atoms that make up the surface of the material.

Credit: Udo Schwarz, Yale University

Abstract:
The National Science Foundation (NSF) today announced awards for three Materials Interdisciplinary Research Teams (MIRT) and nine Centers of Excellence in Materials Research and Innovation, also known as Materials Research Science and Engineering Centers (MRSEC). The awards resulted from the 2011 Materials Research Centers and Teams competition (solicitation NSF 10-568).

NSF Announces Results of the Materials Research Centers and Teams Competition: The centers and teams support outstanding interdisciplinary materials research and education

Arlington, VA | Posted on September 10th, 2011

The centers and teams support outstanding multi- and inter-disciplinary materials research and education addressing fundamental problems in science and engineering and foster active collaboration among universities, international collaborators, industry and national laboratories.

"In light of the strong interest on the part of the administration in materials research through the recently announced Materials Genome Initiative, these awards are timely in order to advance new discoveries, support a strong workforce and strengthen infrastructure" said Janice Hicks, deputy director for NSF's Division of Materials Research. "These multidisciplinary awards will especially promote areas such as next-generation electronics and photonics and bio- and soft-materials. The centers will provide leadership for the country pertaining to new materials and new materials phenomena that could ultimately address national needs including sustainability and innovation. We are especially excited about the collaborations internationally and with industry that will give the students and postdocs in the centers experiences valuable to their lives as scientists and engineers."

Three new MIRTs were created as a result of the competition:

The Columbia University MIRT, Building Functional Nanoarchitectures in van der Waals Materials examines the assembly and physical properties of new composite materials created by 'nano-laminating' atomic sheets of different van der Waals materials which have novel electronic properties and are expected to lead to new nanoelectronic devices. The team seeks to exploit a wide range of new material building blocks, including both inorganic and organic materials. The research will focus on understanding the physical principles governing assembly of such materials and examine their distinctive optical, thermal and mechanical properties.

The University of Texas at Austin MIRT, Exploring Unusual Properties of Transition Metal Oxides will synthesize new transition metal oxides and develop a fundamental understanding of correlated electron behavior in these materials, which produce such intriguing properties as high temperature superconductivity, Mott insulator transitions and the newly discovered topological insulator state of matter. The work is anticipated to impact new materials development for the next generation of electronic and electrochemical energy devices.

The University of North Carolina at Chapel Hill MIRT, Stressed Polymers - Exploiting Tension in Soft Matter will develop new principles in soft materials design where mechanical stress in materials is generated, managed, and harvested by molecular engineering. The research may lead to novel multifunctional polymer particles and substrates that autonomously change their shape, surface structure, mechanical and optical properties. These novel materials have potential applications in, among other areas, cancer therapy, imaging and medical diagnosis.

Nine MRSECs were funded in 2011

The three new centers created as a result of the competition are:

The University of Utah Center, Next-Generation Materials for Plasmonics and Spintronics will foster interdisciplinary basic research on new materials in two Interdisciplinary Research Groups (IRGs) entitled "Plasmonic Metamaterials from the Terahertz to the Ultraviolet" and "Organic Spintronics." IRG-1 focuses on exploiting the properties of artificially structured materials (metamaterials) across a broad range of the electromagnetic spectrum. IRG-2 will advance our understanding of the role of spin interactions in organic materials for the development of a range of different spin-related organic devices. Applications range from telecommunications and imaging to new magnetic memory and low-cost organic photovoltaic cells.

The Research Triangle Center, Programmable Assembly of Soft Matter will focus on the study and development of soft matter components to be used in programmable assembly and functional and hybrid materials. IRG-1 will develop a fundamental understanding of self-assembly of materials from colloids, while IRG-2 will establish the rules for the design of "syntactomers," molecules that consist of a defined, repeated sequence of "letters" like amino acids. These projects will impact the production of hybrid photonic and phononic crystals, self-healing materials, "smart" gels, drug delivery materials, tissue implants and 3-D cell culture.

The University of Michigan Center, Photonic and Multiscale Nanomaterials has two IRGs that will develop novel multiscale materials for nanophotonics. IRG-1 will focus on wide bandgap nanostructured materials for high-efficiency visible light emitters, lasers, energy conversion and novel quantum devices. IRG-2 will focus on metamaterials for potential applications in communication, sensing and sub-wavelength imaging.

Six awards will support established centers which have successfully recompeted, in most cases with a significantly different focus of materials research and education:

The Materials Research Laboratory at the University of California at Santa Barbara addresses fundamental problems in materials science and engineering through three IRGs including: IRG-1 on self-assembling materials for new adhesives and materials for hostile biological and underwater environments; IRG-2 on the unique properties of complex oxides, along with new strategies for materials that will significantly advance energy and environmental applications; and IRG-3 on the science and engineering of two-phase nanoscopic materials with unprecedented magnetic, radiation-resistance and thermal transport properties.

The Cornell Center for Materials Research will pursue a vigorous research program through 3 IRGs: IRG-1 focuses on fundamental research and control of complex electronic materials that have spectacular electronic and magnetic properties, including high temperature superconductivity; IRG-2 on understanding and applying new mechanisms to manipulate electron spins in both ferromagnetic and non-ferromagnetic materials, which could potentially enable nonvolatile magnetic memory technologies that are much smaller, more energy efficient, more reliable, faster and less expensive than competing strategies; and IRG-3, which explores atomic membranes an exciting new class of two-dimensional, free-standing materials only one atom thick yet mechanically robust, chemically stable and virtually impermeable.

The theme of the Northwestern University Center is Multifunctional Nanoscale Materials Structures. The goals of the center consist of understanding the fundamental principles and behaviors of complex nanomaterials systems, transferring research results into new technologies and industries and initiating collaborations with national and international partners. Researchers are organized into three IRGs: IRG-1 on controlling fluxes of charge and energy at hybrid interfaces; IRG-2 on the fundamentals of amorphous oxide semiconductors; and IRG-3 on plasmonically-encoded materials for amplified sensing and information manipulation.

The Laboratory for Research on the Structure of Matter at the University of Pennsylvania supports four IRGs. The first IRG explores the interplay of curvature- and elasticity-induced interactions in liquid crystals, colloids and on interfaces. IRG-2 creates materials inspired by virology from novel synthetic macromolecules such as self-assembled Janus dendrimers and designer proteins to be used for sensing, communication and actuation. IRG-3 investigates disordered packings of atoms, colloids and grains to understand how localized rearrangements of constituents organize under load. The concepts generated will provide new strategies for predicting whether materials will fail, and for synthesis of tough materials. IRG-4 builds novel inter-dimensional materials from nanocrystal particles and measures their emergent electronic, optical, acoustic and magnetic properties.

The University of Wisconsin-Madison Center on Structured Interfaces unites a wide array of researchers all focused on the central theme of "Structured Interfaces" and is organized into three IRGs: IRG-1 focuses on new multi-element compounds and semiconductor materials, IRG-2 on charge transport near and across interfaces between organic and inorganic materials and IRG-3 on the synthesis and processes of new classes of functional liquid crystalline materials, composites and interfaces. Industries from displays to solar cells, to electronics and biomedical sensors could benefit from the results produced by these three interdisciplinary research groups.

The Center for Research on Interface Structure and Phenomena at Yale University brings together researchers to discover and develop novel materials engineered at the atomic scale. IRG-1 will investigate novel chemical, electronic and magnetic properties that arise from complex oxide interfaces. IRG-2 will develop new bulk metallic glasses and advance the fundamental understanding of their behavior, enabling surface property engineering. These IRGs will advance a wide range of technologies spanning from computation, communication, energy and medical applications.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Lisa Van Pay
NSF
(703) 292-8796


Program Contacts
Mary E. Galvin
NSF
(703) 292-8562


Sean L. Jones
NSF
(703) 292-2986


Thomas P. Rieker
NSF
(703) 292-4914


Z. Charles Ying
NSF
(703) 292-8428

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

External MRSEC Site:

DMR Website:

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Academic/Education

Luleň University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Molecular Nanotechnology

Moving nanoparticles using light and magnetic fields January 25th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Going swimmingly: Biotemplates breakthrough paves way for cheaper nanobots: By using bacterial flagella as a template for silica, researchers have demonstrated an easier way to make propulsion systems for nanoscale swimming robots November 30th, 2017

Spintronics

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Researchers from TU Delft combine spintronics and nanophotonics in 2-D material January 25th, 2018

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Chip Technology

Basque researchers turn light upside down February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Self Assembly

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Particle size matters for porous building blocks: Rice University scientists find porous nanoparticles get tougher under pressure, but not when assembled December 19th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonics/Optics/Lasers

Basque researchers turn light upside down February 23rd, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project