Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoscale spin waves can replace microwaves

Abstract:
A group of scientists from the University of Gothenburg and the Royal Institute of Technology (KTH), Sweden, have become the first group in the world to demonstrate that theories about nanoscale spin waves agree with observations. This opens the way to replacing microwave technology in many applications, such as mobile phones and wireless networks, by components that are much smaller, cheaper, and that require less resources. The study has been published in the scientific journal Nature Nanotechnology, the most prestigious journal in nanoscience.

Nanoscale spin waves can replace microwaves

Gothenburg, Sweden | Posted on September 8th, 2011

"We have been in competition with two other research groups to be the first to confirm experimentally theoretical predictions that were first made nearly 10 years ago. We have been successful due to our method for constructing magnetic nanocontacts and due to the special microscope at our collaborators' laboratory at the University of Perugia in Italy", says Professor Johan Åkerman of the Department of Physics, University of Gothenburg, where he is head of the Applied Spintronics group.

The aim of the research project, which started two years ago, has been to demonstrate the propagation of spin waves from magnetic nanocontacts. Last autumn, the group was able to demonstrate the existence of spin waves with the aid of electrical measurements, and the results were published in the scientific journal Physical Review Letters. The new results have been published in Nature Nanotechnology, the most prestigious journal in nanoscience.

The research group has used one of the three advanced spin wave microscopes in the world, at the university in the Italian town of Perugia, to visualise the motion. The microscope makes it possible to see the dynamic properties of components with a resolution of approximately 250 nanometre.

The results have opened the way for a new field of research known as "magnonics", using nanoscale magnetic waves.

"I believe that our results will signal the start of a rapid development of magnonic components and circuits. What is particularly exciting is that these components are powered by simple direct current, which is then converted into spin waves in the microwave region. The frequency of these waves can be directly controlled by the current. This will make completely new functions possible", says Johan Åkerman, who is looking forward to exciting developments in the next few years.

Its magneto-optical and metallic properties mean that magnonic technology can be integrated with traditional microwave-based electronic circuits, and this will make completely untried combinations of the technologies possible. Magnonic components are much more suitable for miniaturisation than traditional microwave technology.

Full bibliographic information
Jorunal: Nature Nanotechnology Year published:(2011) doi:10.1038/nnano.2011.140
Title: Direct observation of a propagating spin wave induced by spin-transfer torque
Authors: M. Madami, S. Bonetti, G. Consolo, S. Tacchi, G. Carlotti, G. Gubbiotti, F. B. Mancoff, M. A. Yar & J. Åkerman

####

For more information, please click here

Contacts:
Johan Åkerman
Department of Physics
University of Gothenburg
+46 (0)31 786 9147

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Chip Technology

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project