Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Argonne scientists design self-assembled "micro-robots"

Abstract:
Alexey Snezhko and Igor Aronson, physicists at the U.S. Department of Energy's (DOE) Argonne National Laboratory, have coaxed "micro-robots" to do their bidding.

Argonne scientists design self-assembled "micro-robots"

Argonne, IL | Posted on September 7th, 2011

The robots, just half a millimeter wide, are composed of microparticles. Confined between two liquids, they assemble themselves into star shapes when an alternating magnetic field is applied. Snezhko and Aronson can control the robots' movement and even make them pick up, transport and put down other non-magnetic particles—potentially enabling fabrication of precisely designed functional materials in ways not currently possible.

The discovery grew out of past work with magnetic "snakes". This time, however, Snezhko and Aronson suspended the tiny ferromagnetic particles between two layers of immiscible, or non-mixing, fluids.

Without a magnetic field, the particles drift aimlessly or clamp together. But when an alternating magnetic field is applied perpendicular to the liquid surface, they self-assemble into spiky circular shapes that the scientists nicknamed "asters", after the flower.

Left to their own devices, the asters don't swim. "But if you apply a second small magnetic field parallel to the surface, they begin to move," said Aronson. "The field breaks the symmetry of the asters' hydrodynamic flow, and the asters begin to swim."

By changing the magnetic field, the researchers discovered they could remotely control the asters' motion.

"We can make them open their jaws and close them," said Snezhko. "This gives us the opportunity to use these creatures as mini-robots performing useful tasks. You can move them around and pick up and drop objects."

They soon discovered that the asters form in two "flavors"; one's flow circulates in toward the center of the aster, and the other circulates outward. They swim in opposite directions based on flavor. These properties are useful because scientists can play the flows against one other to make the asters perform tasks.

For example, four asters positioned together act like a miniature vacuum cleaner to collect free-floating particles.

The asters can pick up objects much larger than themselves; in one video, an aster picks up a glass bead that weighs four times as much as the aster itself.

"They can exert very small forces on objects, which is a big challenge for robotics," Aronson explained. "Gripping fragile objects without smashing them has always been difficult for conventional robots."

The microrobots occupy a niche between laser-powered manipulation and mechanical micromanipulators, the two previous techniques developed for manipulation at the microscale. "You can grab microparticles with lasers, but the force is much smaller," Snezhko explained. "These asters' forces are more powerful, but they can handle items much more delicately than mechanical micromanipulators can."

The materials can even self-repair; if particles are lost, the aster simply re-shuffles itself.

The research is a part of the ongoing effort, funded by the DOE, to understand and design active self-assembled materials. These structures can assemble, disassemble, and reassemble autonomously or on command and will enable novel materials capable of multi-tasking and self-repair.

"For us, this is very exciting. This is a new paradigm for reconfigurable self-assembled materials that can perform useful functions," Aronson said.

The study, "Magnetic Manipulation of Self-Assembled Colloidal Asters", has been published in Nature Materials.

Snezhko and Aronson are part of the Materials Science Division at Argonne. The research was supported by the DOE Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Louise Lerner
630/252-5526

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - "Micro-robots" team up to act like vacuum cleaner

The study, "Magnetic Manipulation of Self-Assembled Colloidal Asters", has been published in Nature Materials.

Related News Press

News and information

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Treatment of Cell Infection by Nanotechnology September 15th, 2014

Laboratories

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Molecular Nanotechnology

Nanoscale assembly line August 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Self Assembly

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Magnetic nanocubes self-assemble into helical superstructures September 4th, 2014

Discoveries

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE