Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne scientists design self-assembled "micro-robots"

Abstract:
Alexey Snezhko and Igor Aronson, physicists at the U.S. Department of Energy's (DOE) Argonne National Laboratory, have coaxed "micro-robots" to do their bidding.

Argonne scientists design self-assembled "micro-robots"

Argonne, IL | Posted on September 7th, 2011

The robots, just half a millimeter wide, are composed of microparticles. Confined between two liquids, they assemble themselves into star shapes when an alternating magnetic field is applied. Snezhko and Aronson can control the robots' movement and even make them pick up, transport and put down other non-magnetic particles—potentially enabling fabrication of precisely designed functional materials in ways not currently possible.

The discovery grew out of past work with magnetic "snakes". This time, however, Snezhko and Aronson suspended the tiny ferromagnetic particles between two layers of immiscible, or non-mixing, fluids.

Without a magnetic field, the particles drift aimlessly or clamp together. But when an alternating magnetic field is applied perpendicular to the liquid surface, they self-assemble into spiky circular shapes that the scientists nicknamed "asters", after the flower.

Left to their own devices, the asters don't swim. "But if you apply a second small magnetic field parallel to the surface, they begin to move," said Aronson. "The field breaks the symmetry of the asters' hydrodynamic flow, and the asters begin to swim."

By changing the magnetic field, the researchers discovered they could remotely control the asters' motion.

"We can make them open their jaws and close them," said Snezhko. "This gives us the opportunity to use these creatures as mini-robots performing useful tasks. You can move them around and pick up and drop objects."

They soon discovered that the asters form in two "flavors"; one's flow circulates in toward the center of the aster, and the other circulates outward. They swim in opposite directions based on flavor. These properties are useful because scientists can play the flows against one other to make the asters perform tasks.

For example, four asters positioned together act like a miniature vacuum cleaner to collect free-floating particles.

The asters can pick up objects much larger than themselves; in one video, an aster picks up a glass bead that weighs four times as much as the aster itself.

"They can exert very small forces on objects, which is a big challenge for robotics," Aronson explained. "Gripping fragile objects without smashing them has always been difficult for conventional robots."

The microrobots occupy a niche between laser-powered manipulation and mechanical micromanipulators, the two previous techniques developed for manipulation at the microscale. "You can grab microparticles with lasers, but the force is much smaller," Snezhko explained. "These asters' forces are more powerful, but they can handle items much more delicately than mechanical micromanipulators can."

The materials can even self-repair; if particles are lost, the aster simply re-shuffles itself.

The research is a part of the ongoing effort, funded by the DOE, to understand and design active self-assembled materials. These structures can assemble, disassemble, and reassemble autonomously or on command and will enable novel materials capable of multi-tasking and self-repair.

"For us, this is very exciting. This is a new paradigm for reconfigurable self-assembled materials that can perform useful functions," Aronson said.

The study, "Magnetic Manipulation of Self-Assembled Colloidal Asters", has been published in Nature Materials.

Snezhko and Aronson are part of the Materials Science Division at Argonne. The research was supported by the DOE Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please click here

Contacts:
Louise Lerner
630/252-5526

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - "Micro-robots" team up to act like vacuum cleaner

The study, "Magnetic Manipulation of Self-Assembled Colloidal Asters", has been published in Nature Materials.

Related News Press

News and information

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Laboratories

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Molecular Machines

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

New remote control for molecular motors: It is now theoretically possible to remotely control the direction in which magnetic molecules spin, which opens the door to designing applications based on molecular motors March 16th, 2015

Molecular Nanotechnology

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Monitoring the real-time deformation of carbon nanocoils under axial loading February 18th, 2015

Self Assembly

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Carnegie Mellon chemists create tiny gold nanoparticles that reflect nature's patterns April 9th, 2015

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

In situ production of biofunctionalised few-layer defect-free microsheets of graphene April 7th, 2015

Discoveries

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Introduction of the LVEM25 Low Voltage Electron Microscope April 21st, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project