Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB Physicists Demonstrate the Quantum von Neumann Architecture, a Quantum Processor, and a Quantum Memory on a Chip

The quantum von Neumann machine: Two qubits are coupled to a quantum bus, realizing a quCPU. Each qubit is accompanied by a quantum memory as well as a zeroing register. The quantum memories together with the zeroing register realize the quRAM.
Credit: Peter Allen, UCSB
The quantum von Neumann machine: Two qubits are coupled to a quantum bus, realizing a quCPU. Each qubit is accompanied by a quantum memory as well as a zeroing register. The quantum memories together with the zeroing register realize the quRAM.

Credit: Peter Allen, UCSB

Abstract:
A new paradigm in quantum information processing has been demonstrated by physicists at UC Santa Barbara. Their results are published in this week's issue of Science Express online.

UCSB Physicists Demonstrate the Quantum von Neumann Architecture, a Quantum Processor, and a Quantum Memory on a Chip

Santa Barbara, CA | Posted on September 1st, 2011

UCSB physicists have demonstrated a quantum integrated circuit that implements the quantum von Neumann architecture. In this architecture, a long-lived quantum random access memory can be programmed using a quantum central processing unit, all constructed on a single chip, providing the key components for a quantum version of a classical computer.

The UCSB hardware is based on superconducting quantum circuits, and must be cooled to very low temperatures to display quantum behavior. The architecture represents a new paradigm in quantum information processing, and shows that quantum large-scale-integration is within reach.

The quantum integrated circuit includes two quantum bits (qubits), a quantum communication bus, two bits of quantum memory, and a resetting register comprising a simple quantum computer. "Computational steps take a few billionths of a second, comparable to a classical computer, but the great power is that a quantum computer can perform a large number of calculations simultaneously," said Matteo Mariantoni, postdoctoral fellow in the Department of Physics. "In our new UCSB architecture we have explored the possibility of writing quantum information to memory, while simultaneously performing other quantum calculations.

"On the quantum von Neumann architecture, we were able to run the quantum Fourier transform and a three-qubit Toffoli gate -- key quantum logic circuits for the further development of quantum computing," said Mariantoni.

The UCSB experiment was pursued primarily by Mariantoni, under the direction of Andrew N. Cleland and John M. Martinis, both professors of physics. Mariantoni was supported in this work by an Elings Prize Fellowship in Experimental Science from UCSB's California NanoSystems Institute.

####

For more information, please click here

Contacts:
Gail Gallessich
(805)-893-7220


Matteo Mariantoni
(805) 893-5218
+39-338-7169569

skype name: matteo.mariantoni

Andrew Cleland
(805) 893-5401


John Martinis
(805) 893-3910

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Chip Technology

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Memory Technology

Buckle up for fast ionic conduction June 16th, 2015

A KAIST research team develops the first flexible phase-change random access memory June 15th, 2015

Argonne scientists announce first room-temperature magnetic skyrmion bubbles: New ideas are bubbling up for more efficient computer memory June 13th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

Quantum Computing

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Spintronics advance brings wafer-scale quantum devices closer to reality June 24th, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Discovery paves way for new kinds of superconducting electronics June 22nd, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project