Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > MIT Creates New Center for Graphene Devices & Systems

Abstract:
The Massachusetts Institute of Technology has announced the creation of the MIT/MTL Center for Graphene Devices and Systems (MIT-CG). This interdepartmental center, part of the Microsystems Technology Laboratories (MTL), brings together MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies.

MIT Creates New Center for Graphene Devices & Systems

Cambridge, MA | Posted on September 1st, 2011

Graphene, a form of pure carbon arranged in an hexagonal lattice just one atom thick, has generated great excitement among researchers worldwide for its unique properties that stand to revolutionize materials science and electronics. Until recently, most studies have focused on the basic physical properties of graphene. Work at the new Center will go beyond this research, exploring advanced technologies and strategies that will lead to graphene-based materials, devices and systems for a variety of applications, including graphene-enabled systems for energy generation, smart fabrics and materials, radio-frequency communications, and sensing, to name a few.

"The unique structure and properties of graphene have the potential to impact numerous industries," says Tomas Palacios, the Emanuel E. Landsman Career Development Associate Professor of Electronics at MIT's Department of Electrical Engineering and Computer Science, and first director of the MIT-CG. "The new MIT/MTL Center for Graphene Devices and Systems will be a driving force in exploring the numerous applications for graphene, and will create a vision for the future of graphene-enabled systems."

This Center benefits from very close collaboration with industrial partners. According to Michael Strano, Associate Professor in the Department of Chemical Engineering and co-director of the Center. "This academic-industrial partnership is essential to the advancement of both fundamental graphene science, and of emerging technological applications. One of the main goals of the Center is to create an environment that fosters this collaboration."

The Center coordinates the work of the more than 15 MIT research groups working on graphene, and leverages several existing collaborative efforts in graphene science that currently exist on campus, including a Multidisciplinary University Research Initiative grant (MURI) from the Office of Naval Research with Harvard and Boston University, as well as a regular Boston-Area CarbOn Nanoscience (BACON) Meeting.

The kick-off meeting of the MIT/MTL Center for Graphene Devices and Systems was held at MIT on July 28th, 2011 with important participation from industry and government agencies.

####

For more information, please click here

Contacts:
Tomas Palacios
Director, MIT-GC
Emmanuel E. Landsman CD Associate Professor of Electrical Engineering
Massachusetts Institute of Technology
Room 39-567B
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617.324.2395.—Tel
617.258.7393—Fax

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Graphene/ Graphite

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Lithium-ion batteries: Capacity might be increased by 6 times August 9th, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

SUNY Poly Partnership with Japan's New Energy and Industrial Development Organization Drives Investment in and Installation of Emerging ‘Green’ Technologies at World-Class 'Zero Energy Nano' Building March 22nd, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic