Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > MIT Creates New Center for Graphene Devices & Systems

Abstract:
The Massachusetts Institute of Technology has announced the creation of the MIT/MTL Center for Graphene Devices and Systems (MIT-CG). This interdepartmental center, part of the Microsystems Technology Laboratories (MTL), brings together MIT researchers and industrial partners to advance the science and engineering of graphene-based technologies.

MIT Creates New Center for Graphene Devices & Systems

Cambridge, MA | Posted on September 1st, 2011

Graphene, a form of pure carbon arranged in an hexagonal lattice just one atom thick, has generated great excitement among researchers worldwide for its unique properties that stand to revolutionize materials science and electronics. Until recently, most studies have focused on the basic physical properties of graphene. Work at the new Center will go beyond this research, exploring advanced technologies and strategies that will lead to graphene-based materials, devices and systems for a variety of applications, including graphene-enabled systems for energy generation, smart fabrics and materials, radio-frequency communications, and sensing, to name a few.

"The unique structure and properties of graphene have the potential to impact numerous industries," says Tomas Palacios, the Emanuel E. Landsman Career Development Associate Professor of Electronics at MIT's Department of Electrical Engineering and Computer Science, and first director of the MIT-CG. "The new MIT/MTL Center for Graphene Devices and Systems will be a driving force in exploring the numerous applications for graphene, and will create a vision for the future of graphene-enabled systems."

This Center benefits from very close collaboration with industrial partners. According to Michael Strano, Associate Professor in the Department of Chemical Engineering and co-director of the Center. "This academic-industrial partnership is essential to the advancement of both fundamental graphene science, and of emerging technological applications. One of the main goals of the Center is to create an environment that fosters this collaboration."

The Center coordinates the work of the more than 15 MIT research groups working on graphene, and leverages several existing collaborative efforts in graphene science that currently exist on campus, including a Multidisciplinary University Research Initiative grant (MURI) from the Office of Naval Research with Harvard and Boston University, as well as a regular Boston-Area CarbOn Nanoscience (BACON) Meeting.

The kick-off meeting of the MIT/MTL Center for Graphene Devices and Systems was held at MIT on July 28th, 2011 with important participation from industry and government agencies.

####

For more information, please click here

Contacts:
Tomas Palacios
Director, MIT-GC
Emmanuel E. Landsman CD Associate Professor of Electrical Engineering
Massachusetts Institute of Technology
Room 39-567B
77 Massachusetts Avenue
Cambridge, MA 02139-4307
617.324.2395.—Tel
617.258.7393—Fax

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Arrowhead Presents Promising Preclinical Data on Development of ARO-AAT for Treatment of Alpha-1 Liver Disease at Liver Meeting(R) 2017 October 23rd, 2017

Graphene/ Graphite

Graphene forged into three-dimensional shapes September 26th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

Openings/New facilities/Groundbreaking/Expansion

Aculon Expands NanoProof® Product Line for Electronics Waterproofing Technology: With growing market opportunities Aculon Launches NanoProof® 8 with Push Through Connectivity™ and NanoProof® DAB a syringe application May 30th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) October 23rd, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Arrowhead Presents Promising Preclinical Data on Development of ARO-AAT for Treatment of Alpha-1 Liver Disease at Liver Meeting(R) 2017 October 23rd, 2017

Research partnerships

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project