Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Novel alloy could produce hydrogen fuel from sunlight: Using advanced theoretical computations, a team of Kentucky scientists has derived a means to "tweak" an inexpensive semiconductor to function as photoelectrochemical catalyst

Abstract:
Scientists from the University of Kentucky and the University of Louisville have determined that an inexpensive semiconductor material can be "tweaked" to generate hydrogen from water using sunlight.

Novel alloy could produce hydrogen fuel from sunlight: Using advanced theoretical computations, a team of Kentucky scientists has derived a means to "tweak" an inexpensive semiconductor to function as photoelectrochemical catalyst

Lexington, KY | Posted on September 1st, 2011

The research, funded by the U.S. Department of Energy, was led by Professors Madhu Menon and R. Michael Sheetz at the UK Center for Computational Sciences, and Professor Mahendra Sunkara and graduate student Chandrashekhar Pendyala at the UofL Conn Center for Renewable Energy Research. Their findings were published Aug. 1 in the Physical Review Journal (Phys Rev B 84, 075304).

The researchers say their findings are a triumph for computational sciences, one that could potentially have profound implications for the future of solar energy.

Using state-of-the-art theoretical computations, the UK-UofL team demonstrated that an alloy formed by a 2 percent substitution of antimony (Sb) in gallium nitride (GaN) has the right electrical properties to enable solar light energy to split water molecules into hydrogen and oxygen, a process known as photoelectrochemical (PEC) water splitting. When the alloy is immersed in water and exposed to sunlight, the chemical bond between the hydrogen and oxygen molecules in water is broken. The hydrogen can then be collected.

"Previous research on PEC has focused on complex materials," Menon said. "We decided to go against the conventional wisdom and start with some easy-to-produce materials, even if they lacked the right arrangement of electrons to meet PEC criteria. Our goal was to see if a minimal 'tweaking' of the electronic arrangement in these materials would accomplish the desired results."

Gallium nitride is a semiconductor that has been in widespread use to make bright-light LEDs since the 1990s. Antimony is a metalloid element that has been in increased demand in recent years for applications in microelectronics. The GaN-Sb alloy is the first simple, easy-to-produce material to be considered a candidate for PEC water splitting. The alloy functions as a catalyst in the PEC reaction, meaning that it is not consumed and may be reused indefinitely. UofL and UK researchers are currently working toward producing the alloy and testing its ability to convert solar energy to hydrogen.

Hydrogen has long been touted as a likely key component in the transition to cleaner energy sources. It can be used in fuel cells to generate electricity, burned to produce heat, and utilized in internal-combustion engines to power vehicles. When combusted, hydrogen combines with oxygen to form water vapor as its only waste product. Hydrogen also has wide-ranging applications in science and industry.

Because pure hydrogen gas is not found in free abundance on Earth, it must be manufactured by unlocking it from other compounds. Thus, hydrogen is not considered an energy source, but rather an "energy carrier." Currently, it takes a large amount of electricity to generate hydrogen by water splitting. As a consequence, most of the hydrogen manufactured today is derived from non-renewable sources such as coal and natural gas.

Sunkara says the GaN-Sb alloy has the potential to convert solar energy into an economical, carbon-free source for hydrogen.

"Hydrogen production now involves a large amount of CO2 emissions," Sunkara said. "Once this alloy material is widely available, it could conceivably be used to make zero-emissions fuel for powering homes and cars and to heat homes."

Menon says the research should attract the interest of other scientists across a variety of disciplines.

"Photocatalysis is currently one of the hottest topics in science," Menon said. "We expect the present work to have a wide appeal in the community spanning chemistry, physics and engineering."

####

For more information, please click here

Contacts:
University of Kentucky
Keith Hautala

859-323-2396

University of Louisville
Judy Hughes
(502) 852-6171

Copyright © University of Kentucky

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Chemistry

Thinnest feasible membrane produced April 17th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

Research partnerships

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Carbon nanotubes grow in combustion flames April 1st, 2014

Solar/Photovoltaic

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE