Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Surface Functionalization of Nanotube Fillers: A Review

Abstract:
by Dmitri Golberg published: 2011-07-26


Surface Modification of Nanotube Fillers
Editor: Vikas Mittal
Hardcover
331 pages
US $155.00

Surface Functionalization of Nanotube Fillers: A Review

Posted on July 29th, 2011

Carbon nanotubes, wrapped cylinders of graphitic carbon, are ultimately strong nanofibers with a Young's modulus of ~1 TPa and tensile strength of ~100 GPa. Such amazing "dream" structural material, nearly 100 times stronger than standard steels, must and will be utilized for individual or composite applications in the 21st century. While the individual structural applications of nanotubes are still rather challenging, except the cases of nanosized schemes - which, strictly speaking, are not very practical for general public applications - making nanotube reinforced macrocomposites seems to be a feasible and widely acceptable strategy.

Among such macrocomposites, to date, the most developed branch has been the fabrication of polymeric ones. In fact, the polymers, having amorphous homogeneous matrices and no grain or other defect networks, opposed to metals or ceramics (and thus no issues of reinforcing fibers complex interactions with them) are the simplest to make fiber-reinforced composites. Nanotubes are a relatively new class of polymers fillers, but the factors historically affecting the performances of the conventional fibers-filled polymers should analogously be taken into account for them.

Needless to say, many technological problems still exist. Namely, they are: chemical compatibility of fibers and matrices, an effective load transfer, compactness of a composite, having no voids or cracks (which would later serve as stress concentrators leading to the overall materials weakness), and so on. Since polymer matrices may have different polarities and functional groups in their bodies, the surfaces of the reinforcing nanotubes should be altered accordingly. Therefore, applications of carbon nanotubes for effective polymeric composites should go along with smart findings of various ways to functionalize their surfaces to effectively solve all the above-mentioned practical issues.

In this book, edited by Vikas Mittal and entitled "Surface modification of nanotube fillers", all the regarded state-of-the-art findings are thoroughly presented and discussed. The book covers all possible sorts of tube surface treatments that one can think of, toward functional improvement of the polymeric composites. Firstly, it basically distinguishes two main well-established approaches: covalent and noncovalent nanotube surface fuctionalizations. And secondly, the book details them, depicting the nice examples of layer-by-layer surface molecule ensembles, block copolymers, conjugated polymers, nanoparticles, and amine groups. Various strategies are presented and discussed, namely, nanotube ring openings and anionic, or cationic initiations, grafting through atom transfer, plasma treatment or dipolar cycloadditions.

The book should be of daily use for chemists and materials scientists working in the field of polymeric research and should serve as a practical guide for finding the smartest way of mechanical or functional property improvement of a given polymer. Although it is solely concentrating on chemistry and surface functionalizations of most studied carbon nanotubes in regards of their usages toward polymer reinforcements, many practical answers and theoretical clues may be found for whose working on other inorganic one-dimensional, e.g. nanotubes, nanowires, or two-dimensional systems, such as graphene-like nanosheets, made of boron nitrides or transition metal dichalcogenides, e.g. MoS2, WS2,TiS2,TaS2 and ZrS2. The latter are becoming more and more popular these days and in many senses may rival or overcome their sister all-carbon nanostructures. And, very likely, one day a separate book devoted to their surface functionalizations toward applications in diverse composites, at the same level of excellence in detail and specification, as the regarded one, edited by Vikas Mittal, will emerge.

####

For more information, please click here

Contacts:
Dmitri Golberg
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science (NIMS)
Namiki 1, Tsukuba, Ibaraki 3050044
Japan

Copyright © John Wiley & Sons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Scientists make transparent materials absorb light December 1st, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017

Materials/Metamaterials

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Scientists make transparent materials absorb light December 1st, 2017

Announcements

Leti to Demo Wristband with Embedded Sensors to Diagnose Sleep Apnea: APNEAband, Which Will Be Demonstrated at CES 2018, Also Monitors Mountain Sickness, Dehydration, Dialysis Treatment Response and Epileptic Seizures December 12th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project