Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Surface Functionalization of Nanotube Fillers: A Review

Abstract:
by Dmitri Golberg published: 2011-07-26


Surface Modification of Nanotube Fillers
Editor: Vikas Mittal
Hardcover
331 pages
US $155.00

Surface Functionalization of Nanotube Fillers: A Review

Posted on July 29th, 2011

Carbon nanotubes, wrapped cylinders of graphitic carbon, are ultimately strong nanofibers with a Young's modulus of ~1 TPa and tensile strength of ~100 GPa. Such amazing "dream" structural material, nearly 100 times stronger than standard steels, must and will be utilized for individual or composite applications in the 21st century. While the individual structural applications of nanotubes are still rather challenging, except the cases of nanosized schemes - which, strictly speaking, are not very practical for general public applications - making nanotube reinforced macrocomposites seems to be a feasible and widely acceptable strategy.

Among such macrocomposites, to date, the most developed branch has been the fabrication of polymeric ones. In fact, the polymers, having amorphous homogeneous matrices and no grain or other defect networks, opposed to metals or ceramics (and thus no issues of reinforcing fibers complex interactions with them) are the simplest to make fiber-reinforced composites. Nanotubes are a relatively new class of polymers fillers, but the factors historically affecting the performances of the conventional fibers-filled polymers should analogously be taken into account for them.

Needless to say, many technological problems still exist. Namely, they are: chemical compatibility of fibers and matrices, an effective load transfer, compactness of a composite, having no voids or cracks (which would later serve as stress concentrators leading to the overall materials weakness), and so on. Since polymer matrices may have different polarities and functional groups in their bodies, the surfaces of the reinforcing nanotubes should be altered accordingly. Therefore, applications of carbon nanotubes for effective polymeric composites should go along with smart findings of various ways to functionalize their surfaces to effectively solve all the above-mentioned practical issues.

In this book, edited by Vikas Mittal and entitled "Surface modification of nanotube fillers", all the regarded state-of-the-art findings are thoroughly presented and discussed. The book covers all possible sorts of tube surface treatments that one can think of, toward functional improvement of the polymeric composites. Firstly, it basically distinguishes two main well-established approaches: covalent and noncovalent nanotube surface fuctionalizations. And secondly, the book details them, depicting the nice examples of layer-by-layer surface molecule ensembles, block copolymers, conjugated polymers, nanoparticles, and amine groups. Various strategies are presented and discussed, namely, nanotube ring openings and anionic, or cationic initiations, grafting through atom transfer, plasma treatment or dipolar cycloadditions.

The book should be of daily use for chemists and materials scientists working in the field of polymeric research and should serve as a practical guide for finding the smartest way of mechanical or functional property improvement of a given polymer. Although it is solely concentrating on chemistry and surface functionalizations of most studied carbon nanotubes in regards of their usages toward polymer reinforcements, many practical answers and theoretical clues may be found for whose working on other inorganic one-dimensional, e.g. nanotubes, nanowires, or two-dimensional systems, such as graphene-like nanosheets, made of boron nitrides or transition metal dichalcogenides, e.g. MoS2, WS2,TiS2,TaS2 and ZrS2. The latter are becoming more and more popular these days and in many senses may rival or overcome their sister all-carbon nanostructures. And, very likely, one day a separate book devoted to their surface functionalizations toward applications in diverse composites, at the same level of excellence in detail and specification, as the regarded one, edited by Vikas Mittal, will emerge.

####

For more information, please click here

Contacts:
Dmitri Golberg
International Center for Materials Nanoarchitectonics (MANA)
National Institute for Materials Science (NIMS)
Namiki 1, Tsukuba, Ibaraki 3050044
Japan

Copyright © John Wiley & Sons

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Nanotubes/Buckyballs

Tesla NanoCoatings Increasing Use of SouthWest NanoTechnologies Carbon Nanotubes (CNTs) for its Infrastructure Coatings and Paints: High Quality SMW™ Specialty Multi-wall Carbon Nanotubes Incorporated into Teslan®-brand coatings used by Transportation, Oil and Gas Companies November 19th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Neural Canals Produced in Iran for Recovery of Sciatica Nerve November 8th, 2014

Materials/Metamaterials

Sustainable Nanotechnologies Project November 20th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Nanocomposites Strengthen Bone Implants November 13th, 2014

Production of Magnetic Nanoparticles with New Structures in Iran November 13th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE