Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Material created at Purdue lets electrons 'dance' and form new state

Purdue professors Michael Manfra, from left, and Gabor Csathy stand next to the high-mobility gallium-arsenide molecular beam epitaxy system at the Birck Nanotechnology Center. Manfra holds a gallium-arsenide wafer on which his research team grows ultrapure gallium arsenide semiconductor crystals to observe new electron ground states that could have applications in high-speed quantum computing. (Purdue University photo/Andrew Hancock)
Purdue professors Michael Manfra, from left, and Gabor Csathy stand next to the high-mobility gallium-arsenide molecular beam epitaxy system at the Birck Nanotechnology Center. Manfra holds a gallium-arsenide wafer on which his research team grows ultrapure gallium arsenide semiconductor crystals to observe new electron ground states that could have applications in high-speed quantum computing. (Purdue University photo/Andrew Hancock)

Abstract:
A team of Purdue University researchers is among a small group in the world that has successfully created ultrapure material that captures new states of matter and could have applications in high-speed quantum computing.

Material created at Purdue lets electrons 'dance' and form new state

West Lafayette, IN | Posted on July 27th, 2011

The material, gallium arsenide, is used to observe states in which electrons no longer obey the laws of single-particle physics, but instead are governed by their mutual interactions.

Michael Manfra, the William F. and Patty J. Miller Associate Professor of Physics who leads the group, said the work provides new insights into fundamental physics.

"These exotic states are beyond the standard models of solid-state physics and are at the frontier of what we understand and what we don't understand," said Manfra, who also is an associate professor of both materials engineering and electrical and computer engineering. "They don't exist in most standard materials, but only under special conditions in ultrapure gallium arsenide semiconductor crystals."

Quantum computing is based on using the quantum mechanical behavior of electrons to create a new way to store and process information that is faster, more powerful and more efficient than classical computing. It taps into the ability of these particles to be put into a correlated state in which a change applied to one particle is instantly reflected by the others. If these processes can be controlled, they could be used to create parallel processing to perform calculations that are impossible on classical computers.

"If we could harness this electron behavior in a semiconductor, it may be a viable approach to building a quantum computer," Manfra said. "Of course this work is just in its very early stages, and although it is very relevant to quantum computation, we are a long way off from that. Foremost at this point is the chance to glimpse unexplained physical phenomena and new particles."

Manfra and his research team designed and built equipment called a high-mobility gallium-arsenide molecular beam epitaxy system, or MBE, that is housed at Purdue's Birck Nanotechnology Center. The equipment makes ultrapure semiconductor materials with atomic-layer precision. The material is a perfectly aligned lattice of gallium and arsenic atoms that can capture electrons on a two-dimensional plane, eliminating their ability to move up and down and limiting their movement to front-to-back and side-to-side.

"We are basically capturing the electrons within microscopic wells and forcing them to interact only with each other," he said. "The material must be very pure to accomplish this. Any impurities that made their way in would cause the electrons to scatter and ruin the fragile correlated state."

The electrons also need to be cooled to extremely low temperatures and a magnetic field is applied to achieve the desired conditions to reach the correlated state.

Gabor Csathy, an assistant professor of physics, is able to cool the material and electrons to 5 millikelvin - close to absolute zero or 460 degrees below zero Fahrenheit - using special equipment in his lab.

"At room temperature, electrons are known to behave like billiard balls on a pool table, bouncing off of the sides and off of each other, and obey the laws of classical mechanics," Csathy said. "As the temperature is lowered, electrons calm down and become aware of the presence of neighboring electrons. A collective motion of the electrons is then possible, and this collective motion is described by the laws of quantum mechanics."

The electrons do a complex dance to try to find the best arrangement for them to achieve the minimum energy level and eventually form new patterns, or ground states, he said.

Csathy, who specializes in quantum transport in semiconductors, takes the difficult measurements of the electrons' movement. The standard metric of semiconductor quality is electron mobility measured in centimeters squared per volt-second. The group recently achieved an electron mobility measurement of 22 million centimeters squared per volt-second, which puts them among the top two to three groups in the world, he said.

Manfra and Csathy presented their work at Microsoft's prestigious Station Q summer meeting on June 17 at the University of California at Santa Barbara. This meeting, sponsored by Microsoft Research, brings together leading researchers to discuss novel approaches to quantum computing. They also received a $700,000 grant from the Department of Energy based on their preliminary results.

In addition to Manfra and Csathy, the research team includes associate professors of physics Leonid Rokhinson and Yuli Lyanda-Geller; professor of physics Gabriele Giuliani; graduate students John Watson, Nodar Samkharadze, Nianpei Deng and Sumit Mondal; and research engineer Geoff Gardner.

"A broad team is necessary to probe this type of physics," Manfra said. "It takes a high level of expertise in materials, measurement and theory that is not often found at one institution. It is the depth of talent at Purdue and ability to easily work with researchers in other areas that made these achievements possible."

####

For more information, please click here

Contacts:
Writer:
Elizabeth K. Gardner
765-494-2081


Sources:
Michael Manfra
765-494-3016


Gabor Csathy
765-494-3012

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Physics

Brookhaven Lab's National Synchrotron Light Source II Approved to Start Routine Operations: Milestone marks transition to exciting new chapter September 23rd, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Govt.-Legislation/Regulation/Funding/Policy

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Chip Technology

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Future flexible electronics based on carbon nanotubes: Study in Applied Physics Letters show how to improve nanotube transistor and circuit performance with fluoropolymers September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Quantum Computing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Discoveries

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Announcements

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

Events/Classes

Oxford Instruments launches 3rd annual Indian nanotechnology seminars in Kolkata and Delhi - sharing expertise with Nanotechnology researchers in India September 25th, 2014

Grenoble Hosting SEMICON Europa Oct. 7-9, First Time Event Held in France: Leti’s 90-square-meter Booth Will Feature Portable Showroom To Demonstrate New Technology Innovations September 24th, 2014

Contributing to the spirit of the IYCR 2014 September 24th, 2014

BSA Distinguished Lecture Tuesday, 10/14: 'LCLS: A Stunning New View Through X-ray Laser Eyes' September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE