Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New spin on friction-stir: Friction-stir extrusion seen as key to new materials process at a fraction of the energy

ORNL researchers (from left) Zhili Feng, Stan David and Alan Frederic display a length of wire more than 15 feet long fabricated with the friction-stir extrusion method. They eventually ran out of the magnesium-aluminum alloy feed stock. Friction-stir extrusion is an energy-efficient method for making wire from high-temperature, recyclable materials.
ORNL researchers (from left) Zhili Feng, Stan David and Alan Frederic display a length of wire more than 15 feet long fabricated with the friction-stir extrusion method. They eventually ran out of the magnesium-aluminum alloy feed stock. Friction-stir extrusion is an energy-efficient method for making wire from high-temperature, recyclable materials.

Abstract:
Researchers Zhili Feng, Alan Frederic and Stan David in Oak Ridge National Laboratory's Materials S&T Division have made significant progress toward a new metal processing technique, called friction-stir extrusion, that could represent a major advance in converting recyclable materials -- such as alloys of aluminum, magnesium and titanium alloys, and even high-temperature superconductors -- to useful products.

New spin on friction-stir: Friction-stir extrusion seen as key to new materials process at a fraction of the energy

Oak Ridge, TN | Posted on July 26th, 2011

The process also represents a step forward in energy-efficient industrial processes in that it eliminates the melting step in conventional metal recycling and processing. The friction-stir method, as the name implies, derives its heat from spinning metal against metal, and direct conversion of mechanical energy to thermal energy as frictional heat generated between two surfaces.

The ORNL team produced a solid wire of a magnesium-aluminum alloy from machined chips, eliminating the energy and labor intensive processes of melting and casting.

"This process is very simple. You get the product form that you want by just using the frictional heat," said Stan David, an ORNL retiree and consultant who once led the division's Materials Joining group.

The new approach provides an opportunity to efficiently produce highly engineered structural and functional materials. Friction extrusion can be developed into metal recycling process of steels, Al alloys, and other recyclable metals. It is suitable to produce a variety of bulk nano materials such as nano engineered ODS alloys. It also has the potential to produce nano grain structure bulk materials. The impact of economically producing nano engineered creep resistance Al conductors in large quantity will be enormous for the power transmission industry.

Friction-stir extrusion could also represent a new route to the fabrication of extremely specialized materials, such as high-temperature superconducting wires and mechanical alloyed materials.

"The process of melting and casting can destroy the properties of a highly ordered, novel material such as an oxide dispersion strengthened materials or a high-temperature superconductors. Because friction-stir only takes the material up to 'plasticizing' temperatures, the properties of the material are not affected as much," said Zhili Feng, who now leads the ORNL group.

The extrusion process follows the same principle of the friction-stir welding, in which a rapidly spinning tool is applied to the metal, heating it until it becomes soft, but not melted. Because the material is still in its solid state when it is extruded, it suffers none of the degradation and transformation that would occur with actual melting.

"The process of melting is very detrimental to those properties," said Feng.

Wayne Thomas, who pioneered the friction stir technology at The Welding Institute in England, says ORNL has proved the basic principle of a new technique that could be key to working with advanced alloys, including high-temperature superconductors.

"It is very difficult to mix silicon, titanium, magnesium and other materials in to alloys and turn them into molten metals. If you can mix them in the solid phase, it is much better, and there are mixtures you can't even consider outside a solid phase," Thomas said.

One such application is the fabrication of mechanically alloyed magnesium alloys into components. Friction-stir extrusion has potential to be a low-cost way to produce product forms with this lightweight and high-performance metal. ORNL is extensively involved in the magnesium alloy R&D and technology transfer and commercialization.

The energy savings of this process are significant: The process requires only 10 to 20 percent of the energy required for conventional melting with potential saving of more than 80 percent.

The team credits DOE's Industrial Technologies Program for a capital equipment investment and programmatic funding that enabled them to establish the prototype friction-stir work station at ORNL. The ORNL team is already seeing industry interest in what they've accomplished so far with the technology. One of the companies is Southwire Company, a major international electric cable company, that is currently working with ORNL on the technology development.

Kiran Manchiraju, director at Southwire Company, said, "The collaborative research between Southwire and ORNL using friction extrusion to synthesize new alloys has yielded promising results. We are excited, that the continued success of this project may result in large scale production of innovative wire and cable products."— Bill Cabage, July 25, 2011

####

For more information, please click here

Contacts:
Bill Cabage

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New ORNL hybrid microscope offers unparalleled capabilities August 10th, 2015

Superconductivity

Two spin liquids square off in an iron-based superconductor: Changes in short-range, transient order in competing liquid-like phases precede onset of superconductivity August 5th, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Discoveries

Successful boron-doping of graphene nanoribbon August 27th, 2015

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Announcements

Successful boron-doping of graphene nanoribbon August 27th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

National Space Society Welcomes Janet Ivey As New NSS Governor: Janet Ivey of Janet's Planet is NOW IN ORBIT as a member of the Board of Governors of the National Space Society August 27th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Patents/IP/Tech Transfer/Licensing

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Research partnerships

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic