Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New spin on friction-stir: Friction-stir extrusion seen as key to new materials process at a fraction of the energy

ORNL researchers (from left) Zhili Feng, Stan David and Alan Frederic display a length of wire more than 15 feet long fabricated with the friction-stir extrusion method. They eventually ran out of the magnesium-aluminum alloy feed stock. Friction-stir extrusion is an energy-efficient method for making wire from high-temperature, recyclable materials.
ORNL researchers (from left) Zhili Feng, Stan David and Alan Frederic display a length of wire more than 15 feet long fabricated with the friction-stir extrusion method. They eventually ran out of the magnesium-aluminum alloy feed stock. Friction-stir extrusion is an energy-efficient method for making wire from high-temperature, recyclable materials.

Abstract:
Researchers Zhili Feng, Alan Frederic and Stan David in Oak Ridge National Laboratory's Materials S&T Division have made significant progress toward a new metal processing technique, called friction-stir extrusion, that could represent a major advance in converting recyclable materials -- such as alloys of aluminum, magnesium and titanium alloys, and even high-temperature superconductors -- to useful products.

New spin on friction-stir: Friction-stir extrusion seen as key to new materials process at a fraction of the energy

Oak Ridge, TN | Posted on July 26th, 2011

The process also represents a step forward in energy-efficient industrial processes in that it eliminates the melting step in conventional metal recycling and processing. The friction-stir method, as the name implies, derives its heat from spinning metal against metal, and direct conversion of mechanical energy to thermal energy as frictional heat generated between two surfaces.

The ORNL team produced a solid wire of a magnesium-aluminum alloy from machined chips, eliminating the energy and labor intensive processes of melting and casting.

"This process is very simple. You get the product form that you want by just using the frictional heat," said Stan David, an ORNL retiree and consultant who once led the division's Materials Joining group.

The new approach provides an opportunity to efficiently produce highly engineered structural and functional materials. Friction extrusion can be developed into metal recycling process of steels, Al alloys, and other recyclable metals. It is suitable to produce a variety of bulk nano materials such as nano engineered ODS alloys. It also has the potential to produce nano grain structure bulk materials. The impact of economically producing nano engineered creep resistance Al conductors in large quantity will be enormous for the power transmission industry.

Friction-stir extrusion could also represent a new route to the fabrication of extremely specialized materials, such as high-temperature superconducting wires and mechanical alloyed materials.

"The process of melting and casting can destroy the properties of a highly ordered, novel material such as an oxide dispersion strengthened materials or a high-temperature superconductors. Because friction-stir only takes the material up to 'plasticizing' temperatures, the properties of the material are not affected as much," said Zhili Feng, who now leads the ORNL group.

The extrusion process follows the same principle of the friction-stir welding, in which a rapidly spinning tool is applied to the metal, heating it until it becomes soft, but not melted. Because the material is still in its solid state when it is extruded, it suffers none of the degradation and transformation that would occur with actual melting.

"The process of melting is very detrimental to those properties," said Feng.

Wayne Thomas, who pioneered the friction stir technology at The Welding Institute in England, says ORNL has proved the basic principle of a new technique that could be key to working with advanced alloys, including high-temperature superconductors.

"It is very difficult to mix silicon, titanium, magnesium and other materials in to alloys and turn them into molten metals. If you can mix them in the solid phase, it is much better, and there are mixtures you can't even consider outside a solid phase," Thomas said.

One such application is the fabrication of mechanically alloyed magnesium alloys into components. Friction-stir extrusion has potential to be a low-cost way to produce product forms with this lightweight and high-performance metal. ORNL is extensively involved in the magnesium alloy R&D and technology transfer and commercialization.

The energy savings of this process are significant: The process requires only 10 to 20 percent of the energy required for conventional melting with potential saving of more than 80 percent.

The team credits DOE's Industrial Technologies Program for a capital equipment investment and programmatic funding that enabled them to establish the prototype friction-stir work station at ORNL. The ORNL team is already seeing industry interest in what they've accomplished so far with the technology. One of the companies is Southwire Company, a major international electric cable company, that is currently working with ORNL on the technology development.

Kiran Manchiraju, director at Southwire Company, said, "The collaborative research between Southwire and ORNL using friction extrusion to synthesize new alloys has yielded promising results. We are excited, that the continued success of this project may result in large scale production of innovative wire and cable products."— Bill Cabage, July 25, 2011

####

For more information, please click here

Contacts:
Bill Cabage

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Laboratories

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Superconductivity

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Iranian researchers Produce High-Temperature Superconductive Nanorods July 7th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Patents/IP/Tech Transfer/Licensing

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

AQUANOVA receives Technology Leadership Award 2014 FROST & SULLIVAN honors NovaSOL® Technology again August 12th, 2014

Blacktrace Holdings Ltd. to in-license PerkinElmer Technology August 8th, 2014

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Research partnerships

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

The thunder god vine, assisted by nanotechnology, could shake up future cancer treatment: Targeted therapy for hepatocellular carcinoma using nanotechnology August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE