Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New spin on friction-stir: Friction-stir extrusion seen as key to new materials process at a fraction of the energy

ORNL researchers (from left) Zhili Feng, Stan David and Alan Frederic display a length of wire more than 15 feet long fabricated with the friction-stir extrusion method. They eventually ran out of the magnesium-aluminum alloy feed stock. Friction-stir extrusion is an energy-efficient method for making wire from high-temperature, recyclable materials.
ORNL researchers (from left) Zhili Feng, Stan David and Alan Frederic display a length of wire more than 15 feet long fabricated with the friction-stir extrusion method. They eventually ran out of the magnesium-aluminum alloy feed stock. Friction-stir extrusion is an energy-efficient method for making wire from high-temperature, recyclable materials.

Abstract:
Researchers Zhili Feng, Alan Frederic and Stan David in Oak Ridge National Laboratory's Materials S&T Division have made significant progress toward a new metal processing technique, called friction-stir extrusion, that could represent a major advance in converting recyclable materials -- such as alloys of aluminum, magnesium and titanium alloys, and even high-temperature superconductors -- to useful products.

New spin on friction-stir: Friction-stir extrusion seen as key to new materials process at a fraction of the energy

Oak Ridge, TN | Posted on July 26th, 2011

The process also represents a step forward in energy-efficient industrial processes in that it eliminates the melting step in conventional metal recycling and processing. The friction-stir method, as the name implies, derives its heat from spinning metal against metal, and direct conversion of mechanical energy to thermal energy as frictional heat generated between two surfaces.

The ORNL team produced a solid wire of a magnesium-aluminum alloy from machined chips, eliminating the energy and labor intensive processes of melting and casting.

"This process is very simple. You get the product form that you want by just using the frictional heat," said Stan David, an ORNL retiree and consultant who once led the division's Materials Joining group.

The new approach provides an opportunity to efficiently produce highly engineered structural and functional materials. Friction extrusion can be developed into metal recycling process of steels, Al alloys, and other recyclable metals. It is suitable to produce a variety of bulk nano materials such as nano engineered ODS alloys. It also has the potential to produce nano grain structure bulk materials. The impact of economically producing nano engineered creep resistance Al conductors in large quantity will be enormous for the power transmission industry.

Friction-stir extrusion could also represent a new route to the fabrication of extremely specialized materials, such as high-temperature superconducting wires and mechanical alloyed materials.

"The process of melting and casting can destroy the properties of a highly ordered, novel material such as an oxide dispersion strengthened materials or a high-temperature superconductors. Because friction-stir only takes the material up to 'plasticizing' temperatures, the properties of the material are not affected as much," said Zhili Feng, who now leads the ORNL group.

The extrusion process follows the same principle of the friction-stir welding, in which a rapidly spinning tool is applied to the metal, heating it until it becomes soft, but not melted. Because the material is still in its solid state when it is extruded, it suffers none of the degradation and transformation that would occur with actual melting.

"The process of melting is very detrimental to those properties," said Feng.

Wayne Thomas, who pioneered the friction stir technology at The Welding Institute in England, says ORNL has proved the basic principle of a new technique that could be key to working with advanced alloys, including high-temperature superconductors.

"It is very difficult to mix silicon, titanium, magnesium and other materials in to alloys and turn them into molten metals. If you can mix them in the solid phase, it is much better, and there are mixtures you can't even consider outside a solid phase," Thomas said.

One such application is the fabrication of mechanically alloyed magnesium alloys into components. Friction-stir extrusion has potential to be a low-cost way to produce product forms with this lightweight and high-performance metal. ORNL is extensively involved in the magnesium alloy R&D and technology transfer and commercialization.

The energy savings of this process are significant: The process requires only 10 to 20 percent of the energy required for conventional melting with potential saving of more than 80 percent.

The team credits DOE's Industrial Technologies Program for a capital equipment investment and programmatic funding that enabled them to establish the prototype friction-stir work station at ORNL. The ORNL team is already seeing industry interest in what they've accomplished so far with the technology. One of the companies is Southwire Company, a major international electric cable company, that is currently working with ORNL on the technology development.

Kiran Manchiraju, director at Southwire Company, said, "The collaborative research between Southwire and ORNL using friction extrusion to synthesize new alloys has yielded promising results. We are excited, that the continued success of this project may result in large scale production of innovative wire and cable products."— Bill Cabage, July 25, 2011

####

For more information, please click here

Contacts:
Bill Cabage

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Laboratories

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

Superconductivity

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Iron secrets behind superconductors unlocked July 7th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

The nanoscopic structure that locks up our genes January 16th, 2018

New exotic phenomena seen in photonic crystals: Researchers observe, for the first time, topological effects unique to an “open” system January 12th, 2018

Discoveries

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Patents/IP/Tech Transfer/Licensing

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Picosun’s ALD nanolaminates improve lifetime and reliability of electronic circuit boards October 24th, 2017

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project