Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Nanomechanics: New Test Measures Key Properties of Polymer Thin Films and Membranes

Nanomechanical measurements (model system and microimage of typical specimen). a) thin rigid film on elastic substrate b) initial strain induces surface wrinkles parallel to stress c) additional strain induces regular pattern of cracks in the film d) typical specimen imaged with optical profilometer (280 X 210 micrometers.)
Credit: Chung, Lee/NIST
Nanomechanical measurements (model system and microimage of typical specimen). a) thin rigid film on elastic substrate b) initial strain induces surface wrinkles parallel to stress c) additional strain induces regular pattern of cracks in the film d) typical specimen imaged with optical profilometer (280 X 210 micrometers.)

Credit: Chung, Lee/NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have demonstrated* a measurement technique that reliably determines three fundamental mechanical properties of near-nanoscale films. The technique, which highlights the challenge of making mechanical measurements on an object with at least one dimension comparable to the size of a virus, should enable better design and engineering for a variety of thin-film technologies, particularly reverse-osmosis membranes for water purification.

Nanomechanics: New Test Measures Key Properties of Polymer Thin Films and Membranes

Gaithersburg, MD | Posted on July 21st, 2011

Reverse-osmosis membranes, explains NIST researcher Chris Stafford, are an interesting challenge for the materials scientist. The membranes are used in water purification systems—a polyamide film no more than 200 nanometers thick backed by a thicker, porous support layer. Water holding dissolved salts or other contaminants is forced against one side of the membrane at substantial pressures up to about a thousand psi (roughly 7 megapascal), and comes out the other side leaving most of the impurities behind. The mechanical integrity of the membrane is obviously essential—it can't tear or develop pinhole leaks under the pressure—but engineers lacked a good way to measure the strength and breaking point, under stress, of these extremely thin films.

The NIST technique builds on earlier work by the team that demonstrated that you can reliably determine Young's modulus—a measure of stiffness or elasticity—for thin and ultrathin films by bonding it to a piece of silicon rubber, and then carefully stretching it in one direction. The film will develop a regularly spaced pattern of wrinkles (try it with a piece of plastic wrap), and the spacing of the wrinkles, the amount of stretch and some math gives you the modulus. In the new work, they basically pull harder until the film starts developing minute cracks crosswise to the tension. These too, it turns out, occur in regular patterns, and the spacing can be analyzed to determine both the fracture strength and the onset fracture strain, or the failure point, of the film.

Applying their technique to study the effect of chlorine on reverse-osmosis membranes, the team uncovered a puzzle. Chlorine in the water is known to cause a progressive deterioration in membrane performance, generally thought to be the result of prolonged chemical attack by the chlorine. Not so, according to the NIST team. "Chemically the chlorine attack is pretty quick," says Stafford. Spectroscopic chemical analysis showed that all the chemical damage from chlorine exposure happens in the first few hours. Tests using the wrinkle-crack method, however, show that the mechanical properties degrade continuously—the material becoming more and more stiff, brittle and weak—up to the longest duration tested, 10 days. "It may be an aging effect in polymers," says Stafford. "We're continuing to study that to figure out what's going on in there, because it's a real measurement challenge to get in on that length scale to follow the structure over time."

The project is part of a broader NIST program to study materials issues related to sustainable technologies like water purification, but the research team notes that the wrinkle-crack method itself would be broadly applicable to mechanical studies of almost any nanoscale thin film in fields as diverse as artificial skin, flexible electronics, thin-film sensors, fuel cells and photovoltaics.

* J.Y. Chung, J.-H. Lee, K.L. Beers and C.M. Stafford. Stiffness, strength, and ductility of nanoscale thin films and membranes - A combined wrinkling-cracking methodology. Nano Letters. Articles ASAP (As Soon As Publishable), July 15, 2011. DOI: 10.1021/nl201764b.

####

About NIST
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum
301-975-2763

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Laboratories

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Thin films

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A new type of quantum bits July 29th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Discoveries

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Announcements

Scientists change properties of zeolites to improve hemodialysis July 29th, 2016

Novel state of matter: Observation of a quantum spin liquid July 29th, 2016

A new type of quantum bits July 29th, 2016

Lonely atoms, happily reunited July 29th, 2016

Water

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Electricity generated with water, salt and a 3-atoms-thick membrane: EPFL researchers have developed a system that generates electricity from osmosis with unparalleled efficiency. Their work, featured in Nature, uses seawater, fresh water, and a new type of membrane just 3 atoms July 15th, 2016

Bouncing droplets remove contaminants like pogo jumpers: Researchers at Duke University and the University of British Columbia are exploring whether surfaces can shed dirt without being subjected to fragile coatings July 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic