Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A theory linking two 'broken symmetries' in high-temperature superconductors is proposed and verified

Simulations, left, of where theory predicts that "singularities" should appear in two small sections of a cuprate superconductor, and STM measurements, right, of where they actually appear.
Simulations, left, of where theory predicts that "singularities" should appear in two small sections of a cuprate superconductor, and STM measurements, right, of where they actually appear.

Abstract:
A theory advanced by a Cornell theoretical physicist to link two "broken symmetries" in a high-temperature superconductor has been verified by experiment, bringing scientists a step closer to understanding and perhaps improving superconducting materials.

A theory linking two 'broken symmetries' in high-temperature superconductors is proposed and verified

Ithaca, NY | Posted on July 21st, 2011

"Such agreement between theory and experiment is rare since high--temperature superconductivity in cuprates has evaded scientists' understanding for over two decades," said Eun-Ah Kim, assistant professor of physics. "Many models have been proposed, but because this one has been verified by experiment it gives us a jumping-off place for further work."

The results are reported in the July 22 issue of the journal Science with Kim as senior author. The work is a followup to the researchers' previous discovery of a broken symmetry in cuprate bonds reported in the July 15, 2010, issue of Nature.

Under certain conditions, observations with a highly sensitive scanning tunneling microscope (STM) show an anomaly in the distribution of energy levels of the electrons bonding copper and oxygen atoms in a cuprate crystal. There also may be interruptions in the orderly wavelike distribution of those energy levels across the entire crystal. Kim proposed an equation to link the two phenomena.

Simulations based on Kim's theory agree closely with STM observations of a cuprate superconductor containing bismuth, strontium and calcium by co-author J. C. Séamus Davis, the James Gilbert White Distinguished Professor in the Physical Sciences at Cornell. "The notion of symmetry can offer a powerful organizing principle for understanding in physics, if you know which symmetries to focus on," Kim said. "Building on our previous work, we zoomed into two particular broken symmetries."

Superconductivity, where a current flows with zero resistance, was first discovered in metals cooled close to absolute zero (-273 degrees Celsius). Cuprates, made up of copper oxide layers alternating with layers of other "dopant" elements, superconduct at temperatures as "high" as 150 degrees above absolute zero.

An STM uses a probe so tiny that its tip is a single atom, scanned across a surface in steps smaller than the width of an atom. By measuring the current flow between the tip and a surface, Davis can identify the "energy states" of electrons under the probe, which can be thought of as the amount of energy needed to pull an electron loose from its atom. A characteristic of high-temperature superconductors is that certain energy states are missing, and it's believed the missing electrons have gone to form so-called "Cooper pairs" that can move without resistance.

At temperatures above the superconducting transition temperature, cuprates still show this "energy gap," but no longer superconduct. In some materials this "pseudogap" is found all the way up to room temperature, so understanding how it works could show how to design new materials that would superconduct at higher temperatures.

STM images show that in the pseudogap condition the number of electron states varies in a wavelike pattern across a cuprate crystal, so a graph of them looks like ridges in corduroy. But here and there the symmetry of this pattern is broken by what Kim calls singularities, where, for example, one stripe splits into two. Mathematically, these are points where the number of electron states winds up to a peak like a little whirlpool.

More recently, the team found that in the checkerboard arrangement of copper and oxygen in a cuprate, the density of electron energy states between the copper and oxygen atoms is different looking "north and south" than "east and west" -- how much different varies from place to place across the crystal. Kim's theory now predicts that this variation is coupled to the singularities. Singularities should occur at places where the north-south/east-west difference equals the average of such differences across the entire crystal, and STM measurements agree with the prediction. "We have applied this to many sets of data going back almost a decade," Kim said.

The next step, she said, is to see how these locations relate to the arrangement of doping atoms in the crystal layers between copper oxide sheets. That alone may not give us room-temperature superconductors, but it could reveal more about how the pseudogap works.

"Is the pseudogap a preparation for superconductivity or is it inhibiting?" Kim asked. "This development allows us to quantify the degree of broken symmetry and may help answer the question."

The research was supported in part by the National Science Foundation and the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Research breakthrough could be significant for quantum computing future: Irish-based scientists confirm crucial characteristic of new superconductor material June 30th, 2023

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project