Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers show that carbon nanotubes are electrochromic

Carbon nanotube films change color when subject to an applied voltage. ( 2011 Wiley-VCH)
Carbon nanotube films change color when subject to an applied voltage. ( 2011 Wiley-VCH)

Smart glass can change color or even go from opaque to transparent with just the flick of a switch. Indium tin oxide is used as an electrical contact in many of these 'electrochromic' devices because it is both transparent to visible light and a good conductor of electricity. But indium and tin are both becoming increasingly expensive as the global supply diminishes.

Researchers show that carbon nanotubes are electrochromic

Tokyo, Japan | Posted on July 20th, 2011

Kazuhiro Yanagi from the Tokyo Metropolitan University, working with colleagues from across Japan, has now shown that carbon could be the perfect replacement.

Graphene sheets, consisting of a single atomic layer of carbon atoms in a honeycomb framework, can be rolled into a tube just a nanometer or so in diameter. These carbon nanotubes are highly conductive, mechanically strong, electrochemically stable and can show bright colors depending on how the sheet is rolled. Yanagi and his team have now shown that carbon nanotubes are also electrochromic.

The optical properties of carbon nanotubes can be altered by changing the density of electrons in the tube. Visible color change is achieved by applying a voltage of at least 2 V across tube when suspended in an electrolyte solution. Previous research has suggested that the nanotubes become photo-electrochemically unstable under these conditions. Yanagi and his colleagues, however, were able to prepare samples with good electrochemical stability using ionic liquids and density-gradient purifications. This combination reduced possible unexpected electrochemical reactions.

The novel electrochromic device consisted of a thin film of carbon nanotubes on a glass substrate. The team demonstrated the electrochromic function of their device using three different samples with different tube diameters. On application of a -3 V potential, 1.4 nm-diameter nanotubes went from a blue-green in color to yellow, 1.0 nm tubes turned from magenta to yellow-orange, and the initially yellow 0.84 nm sample changed to light yellow (see image). In all cases, the color returned to normal when the voltage was switched off. "Next, we would like to control the optical absorption causing the yellow color so we can get a highly transparent sheet of nanotubes, which could be important for electrochromic display applications," says Yanagi.


For more information, please click here

Committee for Public Relations
Tokyo Metropolitan University
1-1 Minami-Osawa, Hachioji-shi Tokyo, Japan 192-0397

Copyright © Tokyo Metropolitan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Electrochromic Carbon Electrodes: Controllable Visible Color Changes in Metallic Single-Wall Carbon Nanotubes

Related News Press

Graphene/ Graphite

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure: Researchers are the first to observe the electronic structure of graphene in an engineered semiconductor; finding could lead to progress in advanced optoelectronics and data processing December 13th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Printing Flexible Graphene Supercapacitors December 1st, 2017

Fast flowing heat in graphene heterostructures: Surprisingly fast heat flow from graphene to its surrounding November 29th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017


Scientists make transparent materials absorb light December 1st, 2017

Researchers advance technique to detect ovarian cancer: Rice, MD Anderson use fluorescent carbon nanotube probes to achieve first in vivo success November 30th, 2017

NanoSummit in Luxembourg: single wall carbon nanotubes have entered our lives as we approach a nanoaugmented future November 23rd, 2017

Fine felted nanotubes : Research team of Kiel University develops new composite material made of carbon nanotubes November 22nd, 2017


Quantum memory with record-breaking capacity based on laser-cooled atoms December 15th, 2017

Record high photoconductivity for new metal-organic framework material December 15th, 2017

Error-free into the quantum computer age December 15th, 2017

Synthetic protein packages its own genetic material and evolves computationally designed protein assemblies are advancing research in synthetic life and in targeted drug delivery December 15th, 2017


Record high photoconductivity for new metal-organic framework material December 15th, 2017

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Creating a new kind of metallic glass December 7th, 2017

Copper will replace toxic palladium and expensive platinum in the synthesis of medications: The effectiveness of copper nanoparticles as a catalyst has been proven December 5th, 2017


Leti Field Trials Demonstrate New Multicarrier Waveform for Rural, Maritime Broadband Radio: Field Trial in Orkney Islands Used New Filtered Multicarrier Waveform at 700MHz Band with Flexible Bandwidth Usage (Fragmented and Continuous Spectrum) December 18th, 2017

CubeSat Structures Competition Opens Space Design to Students of the World December 16th, 2017

Error-free into the quantum computer age December 15th, 2017

Leti Will Demonstrate First 3D Anti-Crash Solution for Embedding in Drones: Fitted on a Mass-Market Microcontroller, 360Fusion Software Technology Detects any Dynamic Obstacle and Helps Guide Drones Away from Collisions December 15th, 2017

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project