Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers show that carbon nanotubes are electrochromic

Carbon nanotube films change color when subject to an applied voltage. (© 2011 Wiley-VCH)
Carbon nanotube films change color when subject to an applied voltage. (© 2011 Wiley-VCH)

Abstract:
Smart glass can change color or even go from opaque to transparent with just the flick of a switch. Indium tin oxide is used as an electrical contact in many of these 'electrochromic' devices because it is both transparent to visible light and a good conductor of electricity. But indium and tin are both becoming increasingly expensive as the global supply diminishes.

Researchers show that carbon nanotubes are electrochromic

Tokyo, Japan | Posted on July 20th, 2011

Kazuhiro Yanagi from the Tokyo Metropolitan University, working with colleagues from across Japan, has now shown that carbon could be the perfect replacement.

Graphene sheets, consisting of a single atomic layer of carbon atoms in a honeycomb framework, can be rolled into a tube just a nanometer or so in diameter. These carbon nanotubes are highly conductive, mechanically strong, electrochemically stable and can show bright colors depending on how the sheet is rolled. Yanagi and his team have now shown that carbon nanotubes are also electrochromic.

The optical properties of carbon nanotubes can be altered by changing the density of electrons in the tube. Visible color change is achieved by applying a voltage of at least 2 V across tube when suspended in an electrolyte solution. Previous research has suggested that the nanotubes become photo-electrochemically unstable under these conditions. Yanagi and his colleagues, however, were able to prepare samples with good electrochemical stability using ionic liquids and density-gradient purifications. This combination reduced possible unexpected electrochemical reactions.

The novel electrochromic device consisted of a thin film of carbon nanotubes on a glass substrate. The team demonstrated the electrochromic function of their device using three different samples with different tube diameters. On application of a -3 V potential, 1.4 nm-diameter nanotubes went from a blue-green in color to yellow, 1.0 nm tubes turned from magenta to yellow-orange, and the initially yellow 0.84 nm sample changed to light yellow (see image). In all cases, the color returned to normal when the voltage was switched off. "Next, we would like to control the optical absorption causing the yellow color so we can get a highly transparent sheet of nanotubes, which could be important for electrochromic display applications," says Yanagi.

####

For more information, please click here

Contacts:
Committee for Public Relations
Tokyo Metropolitan University
1-1 Minami-Osawa, Hachioji-shi Tokyo, Japan 192-0397

Copyright © Tokyo Metropolitan University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Electrochromic Carbon Electrodes: Controllable Visible Color Changes in Metallic Single-Wall Carbon Nanotubes

Related News Press

Graphene

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Haydale and Goodfellow Announce Major Distribution Agreement for Functionalised Graphene Materials July 21st, 2014

CIQUS researchers develop an extremely simple procedure to obtain nanosized graphenes July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Thin films

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Nanotubes/Buckyballs

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Researchers discover boron 'buckyball' July 14th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Materials/Metamaterials

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE