Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Researchers provide means of monitoring cellular interactions: A new technology for monitoring cellular interactions at the nano-scale provides detail never before achieved

Using nanotechnology to engineer sensors onto the surface of cells, researchers at Brigham and Women's Hospital (BWH) have developed a platform technology for monitoring single-cell interactions in real-time. Sensing the niche - Cells carrying sensors monitor the cellular nano-environment in real-time.

Credit: Courtesy of Brigham and Women's Hospital
Using nanotechnology to engineer sensors onto the surface of cells, researchers at Brigham and Women's Hospital (BWH) have developed a platform technology for monitoring single-cell interactions in real-time. Sensing the niche - Cells carrying sensors monitor the cellular nano-environment in real-time.

Credit: Courtesy of Brigham and Women's Hospital

Abstract:
Using nanotechnology to engineer sensors onto the surface of cells, researchers at Brigham and Women's Hospital (BWH) have developed a platform technology for monitoring single-cell interactions in real-time. This innovation addresses needs in both science and medicine by providing the ability to further understand complex cell biology, track transplanted cells, and develop effective therapeutics. These findings are published in the July 17 issue of Nature Nanotechnology.

Researchers provide means of monitoring cellular interactions: A new technology for monitoring cellular interactions at the nano-scale provides detail never before achieved

Boston, MA | Posted on July 17th, 2011

"We can now monitor how individual cells talk to one another in real-time with unprecedented spatial and temporal resolution," says Jeffrey Karp, senior study author, and co-director of the Center for Regenerative Therapeutics (ReGen Rx) at BWH. "This allows us to understand signaling between cells and interactions with drugs in great detail that should have broad implications for basic science and drug discovery",.

The cell-signaling sensors researchers currently use are limited to measuring the activity in the bulk environment that a group of cells are in. In this study, researchers used nanotechnology to anchor a sensor to the membrane of individual cells, allowing them to monitor soluble signals within the cellular nanoenvironment. Given that cells are directly labeled with sensors permits application to transplanted cells or tissues.

"Once this is refined as a tool, and used to study drug interactions with cells on a regular basis, there is potential that it may be used for personalized medicine in the future," said Weian Zhao, lead author of the study, also of the Center for Regenerative Therapeutics (ReGen Rx) at BWH. Karp adds, "We may one day be able to test a drug's influence on cell-cell interactions before deciding on the appropriate therapeutic for each person."

The researchers are also especially excited by preliminary data that demonstrates the potential to use this engineering approach to track and monitor the environment surrounding transplanted cells, in real time, which was never before possible. This would be useful for developing a deeper understanding of signaling events that define a site of inflammation for example or the stem cell niche, which may have implications for treatment of many diseases.

"This new study takes a significant step toward the goal to eavesdrop in real-time and at high spatial resolution on communications between cells in their native environment, with far-reaching implications for the development of new drugs and diagnostics" said Ulrich von Andrian, the Mallinckrodt Professor of Immunopathology at Harvard Medical School who was not involved in this study.

This work was funded by the National Institutes of Health and the American Heart Association.

####

About Brigham and Women's Hospital
Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare, an integrated health care delivery network. BWH is the home of the Carl J. and Ruth Shapiro Cardiovascular Center, the most advanced center of its kind. BWH is committed to excellence in patient care with expertise in virtually every specialty of medicine and surgery. The BWH medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in quality improvement and patient safety initiatives and its dedication to educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Biomedical Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, involving more than 900 physician-investigators and renowned biomedical scientists and faculty supported by more than $537 M in funding. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative.

For more information, please click here

Contacts:
Holly Brown-Ayers

617-534-1603

Copyright © Brigham and Women's Hospital

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanomedicine

Arrowhead to Report Fiscal 2014 Third Quarter Financial Results- Conference Call Scheduled for Tuesday, August 12, 2014 - July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Sensors

Production of Toxic Gas Sensor Based on Nanorods July 28th, 2014

Compact Vibration Harvester Power Supply with Highest Efficiency Opens Door to “Fix-and-Forget” Sensor Nodes July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE