Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Narrowest Bridges of Gold Are Also the Strongest, Study Finds: Technology used to probe tiny samples is licensed to Western New York firm

Abstract:
At an atomic scale, the tiniest bridge of gold -- that made of a single atom -- is actually the strongest, according to new research by engineers at the University at Buffalo's Laboratory for Quantum Devices.

Narrowest Bridges of Gold Are Also the Strongest, Study Finds: Technology used to probe tiny samples is licensed to Western New York firm

Buffalo, NY | Posted on July 16th, 2011

The counterintuitive finding is the result of experiments probing the characteristics of atomic-scale necks of gold that formed when the pointed, gold tip of a cantilever was pushed into a flat, gold surface. An examination of these tiny, gold bridges revealed that they were stiffest when they comprised just a single atom.

The study was published in June in Physical Review B by a trio of UB researchers: postdoctoral fellow Jason Armstrong and professors Susan Hua and Harsh Deep Chopra, all in UB's Department of Mechanical and Aerospace Engineering. Support for the work came from National Science Foundation grants No. DMR-0706074 and No. DMR-0964830.

As engineers look to build devices such as computer circuits with ever-smaller parts, it is critical to learn more about how tiny components comprising a single atom or a few atoms might behave. The physical properties of atomic-scale gadgets differ from those of larger, "bulk" counterparts.

"Everyday intuition would suggest that devices made of just a few atoms would be highly susceptible to mechanical forces," the team said. "This study finds, however, that the ability of the material to resist elastic deformation actually increases with decreasing size."

Another observation the team made while studying the tiny gold necks: abrupt atomic displacements that occur as the gold tip and surface are drawn apart are not arbitrary, but follow well-defined rules of crystallography. More scientific highlights of the work are summarized in the Physical Review Focus of the American Physical Society at http://focus.aps.org/story/v27/st24.

UB's Laboratory for Quantum Devices, led by Chopra and Hua, works on mapping the evolution of various physical properties of materials -- including mechanical, magnetic and magneto-transport behavior -- as sample sizes grow from a single atom to bulk.

This complicated task requires technology capable of capturing a single or few atoms between probes, and further pushing and pulling on the atoms to study their response.

The sophisticated technology that Armstrong, Hua and Chopra invented and built to accomplish the research was recently licensed to Precision Scientific Instruments Inc., a Western New York start-up company founded by the leaders of Murak & Associates LLC, a management consulting practice; SoPark Corporation, an electronics service manufacturer (ESM); and The PCA Group, Inc., a consulting firm that offers total technology solutions.

"The instruments and methods are incredibly precise and capable of deforming the sample at the picometer scale (about 100 times smaller than an atom), which means literally stretching the bond lengths, and simultaneously measuring the forces at the piconewton level, as well as various other properties. As a very broad perspective, by enabling researchers to probe the very small, the technology could speed advances in fields ranging from satellite communications to health care," said Gerry Murak, president and cofounder of Precision Scientific Instruments, Inc.

"Small is exciting, and atomic scale devices are the new frontier of technology. Metrology systems capable of probing the behavior of atomic-scale devices are sorely needed, and this technology gives us a unique platform," Murak said.

####

About University of Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Discoveries

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Materials/Metamaterials

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Aerospace/Space

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology March 7th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project