Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Narrowest Bridges of Gold Are Also the Strongest, Study Finds: Technology used to probe tiny samples is licensed to Western New York firm

Abstract:
At an atomic scale, the tiniest bridge of gold -- that made of a single atom -- is actually the strongest, according to new research by engineers at the University at Buffalo's Laboratory for Quantum Devices.

Narrowest Bridges of Gold Are Also the Strongest, Study Finds: Technology used to probe tiny samples is licensed to Western New York firm

Buffalo, NY | Posted on July 16th, 2011

The counterintuitive finding is the result of experiments probing the characteristics of atomic-scale necks of gold that formed when the pointed, gold tip of a cantilever was pushed into a flat, gold surface. An examination of these tiny, gold bridges revealed that they were stiffest when they comprised just a single atom.

The study was published in June in Physical Review B by a trio of UB researchers: postdoctoral fellow Jason Armstrong and professors Susan Hua and Harsh Deep Chopra, all in UB's Department of Mechanical and Aerospace Engineering. Support for the work came from National Science Foundation grants No. DMR-0706074 and No. DMR-0964830.

As engineers look to build devices such as computer circuits with ever-smaller parts, it is critical to learn more about how tiny components comprising a single atom or a few atoms might behave. The physical properties of atomic-scale gadgets differ from those of larger, "bulk" counterparts.

"Everyday intuition would suggest that devices made of just a few atoms would be highly susceptible to mechanical forces," the team said. "This study finds, however, that the ability of the material to resist elastic deformation actually increases with decreasing size."

Another observation the team made while studying the tiny gold necks: abrupt atomic displacements that occur as the gold tip and surface are drawn apart are not arbitrary, but follow well-defined rules of crystallography. More scientific highlights of the work are summarized in the Physical Review Focus of the American Physical Society at http://focus.aps.org/story/v27/st24.

UB's Laboratory for Quantum Devices, led by Chopra and Hua, works on mapping the evolution of various physical properties of materials -- including mechanical, magnetic and magneto-transport behavior -- as sample sizes grow from a single atom to bulk.

This complicated task requires technology capable of capturing a single or few atoms between probes, and further pushing and pulling on the atoms to study their response.

The sophisticated technology that Armstrong, Hua and Chopra invented and built to accomplish the research was recently licensed to Precision Scientific Instruments Inc., a Western New York start-up company founded by the leaders of Murak & Associates LLC, a management consulting practice; SoPark Corporation, an electronics service manufacturer (ESM); and The PCA Group, Inc., a consulting firm that offers total technology solutions.

"The instruments and methods are incredibly precise and capable of deforming the sample at the picometer scale (about 100 times smaller than an atom), which means literally stretching the bond lengths, and simultaneously measuring the forces at the piconewton level, as well as various other properties. As a very broad perspective, by enabling researchers to probe the very small, the technology could speed advances in fields ranging from satellite communications to health care," said Gerry Murak, president and cofounder of Precision Scientific Instruments, Inc.

"Small is exciting, and atomic scale devices are the new frontier of technology. Metrology systems capable of probing the behavior of atomic-scale devices are sorely needed, and this technology gives us a unique platform," Murak said.

####

About University of Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Charlotte Hsu

716-645-4655

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Nanomedicine

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Discoveries

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Materials/Metamaterials

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Announcements

A drop of water as a model for the interplay of adhesion and stiction June 30th, 2016

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Aerospace/Space

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

Quantum satellite device tests technology for global quantum network: Singapore-built satellite makes and measures light particles pair by pair June 3rd, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360ís Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic