Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Piedmont Triad, N.C., nanotech news (Greensboro, High Point, Winston-Salem)/Serious strength: Advaero technology key to creation of new superstrong fiber

Abstract:
Imagine a strip of material one inch wide and one-tenth of an inch thick. Now imagine a stack of six cars. Finally, imagine lifting that 30,000-pound stack off the ground with that ribbon of material. And the material doesn't break.

Piedmont Triad, N.C., nanotech news (Greensboro, High Point, Winston-Salem)/Serious strength: Advaero technology key to creation of new superstrong fiber

Greensboro, NC | Posted on July 16th, 2011

Aerospace manufacturers, defense contractors and others have only been able to imagine a lightweight composite material with that strength, but a new partnership involving N.C. A&T State University spin-off Advaero Technologies may help make just such a material available in the near future.

Advaero is part of a consortium along with Stanford University and French engineered textile firm Chomarat to bring the so-called "new carbon fiber" or NCF to market, according to Advaero CEO Greg Bowers. Chomarat's North American operations are based in Anderson, S.C.

Under the arrangement, Chomarat will produce the material designed by Stanford using Advaero's technology. Bowers declined to detail the financial aspects of the consortium.

If early indications of NCF's tensile strength prove accurate — that's how hard you can pull on something before it breaks — it will represent about a three-fold improvement of the strength-to-weight ratio over current technologies, Bowers said.

"What that means is, if you make something with the same weight of material, you'd be able to make it three times stronger, or you could equal the current strength at one-third the weight," Bowers aid.

Carbon composite materials are typically made up of carbon fibers and a polymer resin that are combined using various molding methods to create the end product.

The method that produces the strongest materials, Bowers said, is to heat the composite materials under pressure in huge oven-like autoclaves, but the equipment for that process is extremely expensive. More commonly, the molding takes place under a vacuum that is easier to produce but results in a weaker composite.

The technology Advaero licensed from N.C. A&T when it spun out from the university in 2008 is called HVartm, for Heated Vacuum-Assisted Resin Transfer Molding. HVartm applies low levels of heat to the vacuum process, resulting in strengths near what is produced in an autoclave without the high cost, the company says.

Separately, Stanford University researchers recently discovered a carbon composite formulation that reduces the number of layers of carbon fibers needed to produce a particular tensile strength, but they lacked an appropriate method of infusing the resin. They sought technologies from several different companies before choosing HVartm, according to Bowers.

Putting it to work
Advaero was spun out from N.C. A&T in 2008 to commercialize the resin infusion process, and the deal with Chomarat and Stanford represents a great opportunity to put it to work, said Wayne Szafranski, assistant vice chancellor for outreach and economic development for the university.

"I use the analogy of traditional photography," Szafranski said. "You can have a camera and film and they're both nice, but they don't do anything until you put them together."

The material still needs to be proven and produced, but there is already interest in the product including from VX Aerospace, a Morganton company that manufactures and designs advanced composites.

President and Chief Engineer Bob Skillen said the NCF material will allow for whole new levels of high-strength, low-weight materials. Based on its potential, the company recently relaunched a project for the U.S. Marine Corps to produce composite floor panels for the H-46 helicopter that had been canceled because current technologies couldn't meet the combined requirements of strength, weight and cost.

"With this new material we'd be able to meet those requirements, so we've gone back to say, ‘If we can do this now, are you still interested?'" Skillen said. VX is working on an additional proposal using NCF for the U.S. Missile Defense Agency. Other potential users of the technology could range from car manufacturers to jumbo-jet makers, or other applications where material strength and weight are important factors.

Bigger possibilities
If NCF lives up to its potential, it could be a big boost for the Triad's aerospace cluster if Chomarat decides to manufacture the material in the region, which is a possibility according to Bowers and Szafranski. Chomarat officials did not return a call seeking comment, but Szafranski said such a decision would probably be a few years away.

The partnership won't result in a big increase in jobs at Advaero, which is currently based at the Joint School for Nanoscience and Nanoengineering in Greensboro and has four employees and five interns, Bowers said.

But the company does intend to develop its own manufacturing capacity over time. It's currently focusing on applications in the area of wind-turbine energy production and is also developing new products making use of high-temperature nanofibers.

"We want to move this technology forward as quickly as we can," Bowers said.

####

For more information, please click here

Contacts:
Bert Woodard
Next Level Communications
www.nextlevelcom.net
For Piedmont Triad Partnership
336-978-0021

Copyright © Piedmont Triad Partnership

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Automotive/Transportation

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

New designs for solid-state electrolytes may soon revolutionize the battery industry: Scientists achieve monumental improvements in lithium-metal-chloride solid-state electrolytes November 3rd, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Aerospace/Space

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Manufacturing advances bring material back in vogue January 20th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project